![徽省臨泉重點達標名校2024屆中考數(shù)學最后沖刺模擬試卷含解析_第1頁](http://file4.renrendoc.com/view3/M01/32/30/wKhkFmY_FXOABYRYAAGmFM16wyY664.jpg)
![徽省臨泉重點達標名校2024屆中考數(shù)學最后沖刺模擬試卷含解析_第2頁](http://file4.renrendoc.com/view3/M01/32/30/wKhkFmY_FXOABYRYAAGmFM16wyY6642.jpg)
![徽省臨泉重點達標名校2024屆中考數(shù)學最后沖刺模擬試卷含解析_第3頁](http://file4.renrendoc.com/view3/M01/32/30/wKhkFmY_FXOABYRYAAGmFM16wyY6643.jpg)
![徽省臨泉重點達標名校2024屆中考數(shù)學最后沖刺模擬試卷含解析_第4頁](http://file4.renrendoc.com/view3/M01/32/30/wKhkFmY_FXOABYRYAAGmFM16wyY6644.jpg)
![徽省臨泉重點達標名校2024屆中考數(shù)學最后沖刺模擬試卷含解析_第5頁](http://file4.renrendoc.com/view3/M01/32/30/wKhkFmY_FXOABYRYAAGmFM16wyY6645.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
徽省臨泉重點達標名校2024屆中考數(shù)學最后沖刺模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,將一張三角形紙片的一角折疊,使點落在處的處,折痕為.如果,,,那么下列式子中正確的是()A. B. C. D.2.如圖所示,數(shù)軸上兩點A,B分別表示實數(shù)a,b,則下列四個數(shù)中最大的一個數(shù)是(
)A.a(chǎn)
B.b
C. D.3.小軒從如圖所示的二次函數(shù)y=ax2+bx+c(a≠0)的圖象中,觀察得出了下面五條信息:①ab>0;②a+b+c<0;③b+2c>0;④a﹣2b+4c>0;⑤.你認為其中正確信息的個數(shù)有A.2個 B.3個 C.4個 D.5個4.拋物線y=x2+2x+3的對稱軸是()A.直線x=1 B.直線x=-1C.直線x=-2 D.直線x=25.某果園2011年水果產(chǎn)量為100噸,2013年水果產(chǎn)量為144噸,求該果園水果產(chǎn)量的年平均增長率.設該果園水果產(chǎn)量的年平均增長率為x,則根據(jù)題意可列方程為()A.144(1﹣x)2=100 B.100(1﹣x)2=144 C.144(1+x)2=100 D.100(1+x)2=1446.共享單車為市民出行帶來了方便,某單車公司第一個月投放1000輛單車,計劃第三個月投放單車數(shù)量比第一個月多440輛.設該公司第二、三兩個月投放單車數(shù)量的月平均增長率為x,則所列方程正確的為()A.1000(1+x)2=1000+440 B.1000(1+x)2=440C.440(1+x)2=1000 D.1000(1+2x)=1000+4407.如圖,把一個直角三角尺的直角頂點放在直尺的一邊上,若∠1=50°,則∠2=()A.20° B.30° C.40° D.50°8.如圖,扇形AOB中,OA=2,C為弧AB上的一點,連接AC,BC,如果四邊形AOBC為菱形,則圖中陰影部分的面積為()A. B. C. D.9.下列圖形中,是中心對稱但不是軸對稱圖形的為()A. B.C. D.10.已知二次函數(shù)y=x2﹣4x+m的圖象與x軸交于A、B兩點,且點A的坐標為(1,0),則線段AB的長為()A.1 B.2 C.3 D.411.某幾何體的左視圖如圖所示,則該幾何體不可能是()A. B. C. D.12.的相反數(shù)是()A. B.- C. D.-二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知點P(3,1)關于y軸的對稱點Q的坐標是(a+b,﹣1﹣b),則ab的值為_____.14.在直角三角形ABC中,∠C=90°,已知sinA=3515.已知是二元一次方程組的解,則m+3n的立方根為__.16.在數(shù)軸上,點A和點B分別表示數(shù)a和b,且在原點的兩側(cè),若=2016,AO=2BO,則a+b=_____17.如圖所示一棱長為3cm的正方體,把所有的面均分成3×3個小正方形.其邊長都為1cm,假設一只螞蟻每秒爬行2cm,則它從下底面點A沿表面爬行至側(cè)面的B點,最少要用_____秒鐘.18.如圖,已知點A(4,0),O為坐標原點,P是線段OA上任意一點(不含端點O,A),過P,O兩點的二次函數(shù)y1和過P,A兩點的二次函數(shù)y2的圖象開口均向下,它們的頂點分別為B,C,射線OB與射線AC相交于點D.當△ODA是等邊三角形時,這兩個二次函數(shù)的最大值之和等于__.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知關于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分別為△ABC三邊的長.如果x=﹣1是方程的根,試判斷△ABC的形狀,并說明理由;如果方程有兩個相等的實數(shù)根,試判斷△ABC的形狀,并說明理由;如果△ABC是等邊三角形,試求這個一元二次方程的根.20.(6分)觀察下列等式:第1個等式:;第2個等式:;第3個等式:;第4個等式:;…請解答下列問題:按以上規(guī)律列出第5個等式:a5==;用含有n的代數(shù)式表示第n個等式:an==(n為正整數(shù));求a1+a2+a3+a4+…+a100的值.21.(6分)如圖,△ABC中,點D在邊AB上,滿足∠ACD=∠ABC,若AC=,AD=1,求DB的長.22.(8分)列方程或方程組解應用題:為響應市政府“綠色出行”的號召,小張上班由自駕車改為騎公共自行車.已知小張家距上班地點10千米.他用騎公共自行車的方式平均每小時行駛的路程比他用自駕車的方式平均每小時行駛的路程少45千米,他從家出發(fā)到上班地點,騎公共自行車方式所用的時間是自駕車方式所用的時間的4倍.小張用騎公共自行車方式上班平均每小時行駛多少千米?23.(8分)如圖,把△EFP按圖示方式放置在菱形ABCD中,使得頂點E、F、P分別在線段AB、AD、AC上,已知EP=FP=4,EF=4,∠BAD=60°,且AB>4.(1)求∠EPF的大??;(2)若AP=6,求AE+AF的值.24.(10分)如圖,AB為☉O的直徑,CD與☉O相切于點E,交AB的延長線于點D,連接BE,過點O作OC∥BE,交☉O于點F,交切線于點C,連接AC.(1)求證:AC是☉O的切線;(2)連接EF,當∠D=°時,四邊形FOBE是菱形.25.(10分)如圖,在△ABC中,CD⊥AB于點D,tanA=2cos∠BCD,(1)求證:BC=2AD;(2)若cosB=,AB=10,求CD的長.26.(12分)如圖,AB是⊙O的直徑,AC是⊙O的切線,BC與⊙O相交于點D,點E在⊙O上,且DE=DA,AE與BC交于點F.(1)求證:FD=CD;(2)若AE=8,tan∠E=3427.(12分)如圖1,在Rt△ABC中,∠C=90°,AC=BC=2,點D、E分別在邊AC、AB上,AD=DE=AB,連接DE.將△ADE繞點A逆時針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為θ.(1)問題發(fā)現(xiàn)①當θ=0°時,=;②當θ=180°時,=.(2)拓展探究試判斷:當0°≤θ<360°時,的大小有無變化?請僅就圖2的情形給出證明;(3)問題解決①在旋轉(zhuǎn)過程中,BE的最大值為;②當△ADE旋轉(zhuǎn)至B、D、E三點共線時,線段CD的長為.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】
分析:根據(jù)三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得結(jié)論.詳解:由折疊得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故選A.點睛:本題考查了三角形外角的性質(zhì),熟練掌握三角形的外角等于與它不相鄰的兩個內(nèi)角的和是關鍵.2、D【解析】
∵負數(shù)小于正數(shù),在(0,1)上的實數(shù)的倒數(shù)比實數(shù)本身大.∴<a<b<,故選D.3、D【解析】試題分析:①如圖,∵拋物線開口方向向下,∴a<1.∵對稱軸x,∴<1.∴ab>1.故①正確.②如圖,當x=1時,y<1,即a+b+c<1.故②正確.③如圖,當x=﹣1時,y=a﹣b+c>1,∴2a﹣2b+2c>1,即3b﹣2b+2c>1.∴b+2c>1.故③正確.④如圖,當x=﹣1時,y>1,即a﹣b+c>1,∵拋物線與y軸交于正半軸,∴c>1.∵b<1,∴c﹣b>1.∴(a﹣b+c)+(c﹣b)+2c>1,即a﹣2b+4c>1.故④正確.⑤如圖,對稱軸,則.故⑤正確.綜上所述,正確的結(jié)論是①②③④⑤,共5個.故選D.4、B【解析】
根據(jù)拋物線的對稱軸公式:計算即可.【詳解】解:拋物線y=x2+2x+3的對稱軸是直線故選B.【點睛】此題考查的是求拋物線的對稱軸,掌握拋物線的對稱軸公式是解決此題的關鍵.5、D【解析】試題分析:2013年的產(chǎn)量=2011年的產(chǎn)量×(1+年平均增長率)2,把相關數(shù)值代入即可.解:2012年的產(chǎn)量為100(1+x),2013年的產(chǎn)量為100(1+x)(1+x)=100(1+x)2,即所列的方程為100(1+x)2=144,故選D.點評:考查列一元二次方程;得到2013年產(chǎn)量的等量關系是解決本題的關鍵.6、A【解析】
根據(jù)題意可以列出相應的一元二次方程,從而可以解答本題.【詳解】解:由題意可得,1000(1+x)2=1000+440,故選:A.【點睛】此題主要考查一元二次方程的應用,解題的關鍵是根據(jù)題意找到等量關系進行列方程.7、C【解析】
由兩直線平行,同位角相等,可求得∠3的度數(shù),然后求得∠2的度數(shù).【詳解】∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°?50°=40°.故選C.【點睛】本題主要考查平行線的性質(zhì),熟悉掌握性質(zhì)是關鍵.8、D【解析】連接OC,過點A作AD⊥CD于點D,四邊形AOBC是菱形可知OA=AC=2,再由OA=OC可知△AOC是等邊三角形,可得∠AOC=∠BOC=60°,故△ACO與△BOC為邊長相等的兩個等邊三角形,再根據(jù)銳角三角函數(shù)的定義得出AD=OA?sin60°=2×=,因此可求得S陰影=S扇形AOB﹣2S△AOC=﹣2××2×=﹣2.故選D.點睛:本題考查的是扇形面積的計算,熟記扇形的面積公式及菱形的性質(zhì)是解答此題的關鍵.9、C【解析】試題分析:根據(jù)軸對稱圖形及中心對稱圖形的定義,結(jié)合所給圖形進行判斷即可.A、既不是軸對稱圖形,也不是中心對稱圖形,故本選項錯誤;B、是軸對稱圖形,也是中心對稱圖形,故本選項錯誤;C、不是軸對稱圖形,是中心對稱圖形,故本選項正確;D、是軸對稱圖形,不是中心對稱圖形,故本選項錯誤.故選C.考點:中心對稱圖形;軸對稱圖形.10、B【解析】
先將點A(1,0)代入y=x2﹣4x+m,求出m的值,將點A(1,0)代入y=x2﹣4x+m,得到x1+x2=4,x1?x2=3,即可解答【詳解】將點A(1,0)代入y=x2﹣4x+m,得到m=3,所以y=x2﹣4x+3,與x軸交于兩點,設A(x1,y1),b(x2,y2)∴x2﹣4x+3=0有兩個不等的實數(shù)根,∴x1+x2=4,x1?x2=3,∴AB=|x1﹣x2|==2;故選B.【點睛】此題考查拋物線與坐標軸的交點,解題關鍵在于將已知點代入.11、D【解析】
解:幾何體的左視圖是從左面看幾何體所得到的圖形,選項A、B、C的左視圖均為從左往右正方形個數(shù)為2,1,符合題意,選項D的左視圖從左往右正方形個數(shù)為2,1,1,故選D.【點睛】本題考查幾何體的三視圖.12、B【解析】∵+(﹣)=0,∴的相反數(shù)是﹣.故選B.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2【解析】
根據(jù)“關于y軸對稱的點,縱坐標相同,橫坐標互為相反數(shù)”求出ab的值即可.【詳解】∵點P(3,1)關于y軸的對稱點Q的坐標是(a+b,﹣1﹣b),∴a+b=-3,-1-b=1;解得a=-1,b=-2,∴ab=2.故答案為2.【點睛】本題考查了關于x軸,y軸對稱的點的坐標,解題的關鍵是熟練的掌握關于y軸對稱的點的坐標的性質(zhì).14、35【解析】試題分析:解答此題要利用互余角的三角函數(shù)間的關系:sin(90°-α)=cosα,cos(90°-α)=sinα.試題解析:∵在△ABC中,∠C=90°,∴∠A+∠B=90°,∴cosB=sinA=35考點:互余兩角三角函數(shù)的關系.15、3【解析】
把x與y的值代入方程組求出m與n的值,即可確定出所求.【詳解】解:把代入方程組得:相加得:m+3n=27,則27的立方根為3,故答案為3【點睛】此題考查了二元一次方程組的解,方程組的解即為能使方程組中兩方程左右兩邊相等的未知數(shù)的值.16、-672或672【解析】∵,∴a-b=±2016,∵AO=2BO,A和點B分別在原點的兩側(cè)∴a=-2b.當a-b=2016時,∴-2b-b=2016,解得:b=-672.∴a=?2×(-672)=1342,∴a+b=1344+(-672)=672.同理可得當a-b=-2016時,a+b=-672,∴a+b=±672,故答案為:?672或672.17、2.5秒.【解析】
把此正方體的點A所在的面展開,然后在平面內(nèi),利用勾股定理求點A和B點間的線段長,即可得到螞蟻爬行的最短距離.在直角三角形中,一條直角邊長等于5,另一條直角邊長等于2,利用勾股定理可求得.【詳解】解:因為爬行路徑不唯一,故分情況分別計算,進行大、小比較,再從各個路線中確定最短的路線.(1)展開前面右面由勾股定理得AB=cm;(2)展開底面右面由勾股定理得AB==5cm;所以最短路徑長為5cm,用時最少:5÷2=2.5秒.【點睛】本題考查了勾股定理的拓展應用.“化曲面為平面”是解決“怎樣爬行最近”這類問題的關鍵.18、2【解析】
連接PB、PC,根據(jù)二次函數(shù)的對稱性可知OB=PB,PC=AC,從而判斷出△POB和△ACP是等邊三角形,再根據(jù)等邊三角形的性質(zhì)求解即可.【詳解】解:如圖,連接PB、PC,由二次函數(shù)的性質(zhì),OB=PB,PC=AC,∵△ODA是等邊三角形,∴∠AOD=∠OAD=60°,∴△POB和△ACP是等邊三角形,∵A(4,0),∴OA=4,∴點B、C的縱坐標之和為:OB×sin60°+PC×sin60°=4×=2,即兩個二次函數(shù)的最大值之和等于2.故答案為2.【點睛】本題考查了二次函數(shù)的最值問題,等邊三角形的判定與性質(zhì),解直角三角形,作輔助線構(gòu)造出等邊三角形并利用等邊三角形的知識求解是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)△ABC是等腰三角形;(2)△ABC是直角三角形;(3)x1=0,x2=﹣1.【解析】試題分析:(1)直接將x=﹣1代入得出關于a,b的等式,進而得出a=b,即可判斷△ABC的形狀;(2)利用根的判別式進而得出關于a,b,c的等式,進而判斷△ABC的形狀;(3)利用△ABC是等邊三角形,則a=b=c,進而代入方程求出即可.試題解析:(1)△ABC是等腰三角形;理由:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;(2)∵方程有兩個相等的實數(shù)根,∴(2b)2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形;(3)當△ABC是等邊三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理為:2ax2+2ax=0,∴x2+x=0,解得:x1=0,x2=﹣1.考點:一元二次方程的應用.20、(1)(2)(3)【解析】
(1)(2)觀察知,找等號后面的式子規(guī)律是關鍵:分子不變,為1;分母是兩個連續(xù)奇數(shù)的乘積,它們與式子序號之間的關系為:序號的2倍減1和序號的2倍加1.(3)運用變化規(guī)律計算【詳解】解:(1)a5=;(2)an=;(3)a1+a2+a3+a4+…+a100.21、BD=2.【解析】
試題分析:根據(jù)∠ACD=∠ABC,∠A是公共角,得出△ACD∽△ABC,再利用相似三角形的性質(zhì)得出AB的長,從而求出DB的長.試題解析:∵∠ACD=∠ABC,又∵∠A=∠A,∴△ABC∽△ACD,∴,∵AC=,AD=1,∴,∴AB=3,∴BD=AB﹣AD=3﹣1=2.點睛:本題主要考查了相似三角形的判定以及相似三角形的性質(zhì),利用相似三角形的性質(zhì)求出AB的長是解題關鍵.22、15千米.【解析】
首先設小張用騎公共自行車方式上班平均每小時行駛x千米,根據(jù)題意可得等量關系:騎公共自行車方式所用的時間=自駕車方式所用的時間×4,根據(jù)等量關系,列出方程,再解即可.【詳解】:解:設小張用騎公共自行車方式上班平均每小時行駛x千米,根據(jù)題意列方程得:=4×解得:x=15,經(jīng)檢驗x=15是原方程的解且符合實際意義.答:小張用騎公共自行車方式上班平均每小時行駛15千米.23、(1)∠EPF=120°;(2)AE+AF=6.【解析】試題分析:(1)過點P作PG⊥EF于G,解直角三角形即可得到結(jié)論;
(2)如圖2,過點P作PM⊥AB于M,PN⊥AD于N,證明△ABC≌△ADC,Rt△PME≌Rt△PNF,問題即可得證.試題解析:(1)如圖1,過點P作PG⊥EF于G,
∵PE=PF,
∴FG=EG=EF=2,∠FPG=∠EPG=∠EPF,
在△FPG中,sin∠FPG=,
∴∠FPG=60°,
∴∠EPF=2∠FPG=120°;
(2)如圖2,過點P作PM⊥AB于M,PN⊥AD于N,
∵四邊形ABCD是菱形,
∴AD=AB,DC=BC,
∴∠DAC=∠BAC,
∴PM=PN,
在Rt△PME于Rt△PNF中,,
∴Rt△PME≌Rt△PNF,
∴FN=EM,在Rt△PMA中,∠PMA=90°,∠PAM=∠DAB=30°,
∴AM=AP?cos30°=3,同理AN=3,
∴AE+AF=(AM-EM)+(AN+NF)=6.【點睛】運用了菱形的性質(zhì),解直角三角形,全等三角形的判定和性質(zhì),最值問題,等腰三角形的性質(zhì),作輔助線構(gòu)造直角三角形是解題的關鍵.24、(1)詳見解析;(2)30.【解析】
(1)利用切線的性質(zhì)得∠CEO=90°,再證明△OCA≌△OCE得到∠CAO=∠CEO=90°,然后根據(jù)切線的判定定理得到結(jié)論;(2)利用四邊形FOBE是菱形得到OF=OB=BF=EF,則可判定△OBE為等邊三角形,所以∠BOE=60°,然后利用互余可確定∠D的度數(shù).【詳解】(1)證明:∵CD與⊙O相切于點E,∴OE⊥CD,∴∠CEO=90°,又∵OC∥BE,∴∠COE=∠OEB,∠OBE=∠COA∵OE=OB,∴∠OEB=∠OBE,∴∠COE=∠COA,又∵OC=OC,OA=OE,∴△OCA≌△OCE(SAS),∴∠CAO=∠CEO=90°,又∵AB為⊙O的直徑,∴AC為⊙O的切線;(2)∵四邊形FOBE是菱形,∴OF=OB=BF=EF,∴OE=OB=BE,∴△OBE為等邊三角形,∴∠BOE=60°,而OE⊥CD,∴∠D=30°.【點睛】本題考查了切線的判定與性質(zhì):經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線;圓的切線垂直于經(jīng)過切點的半徑.判定切線時“連圓心和直線與圓的公共點”或“過圓心作這條直線的垂線”;有切線時,常常“遇到切點連圓心得半徑”.也考查了圓周角定理.25、(1)證明見解析;(2)CD=2.【解析】
(1)根據(jù)三角函數(shù)的概念可知tanA=,cos∠BCD=,根據(jù)tanA=2cos∠BCD即可得結(jié)論;(2)由∠B的余弦值和(1)的結(jié)論即可求得BD,利用勾股定理求得CD即可.【詳解】(1)∵tanA=,cos∠BCD=,tanA=2cos∠BCD,∴=2·,∴BC=2AD.(2)∵cosB==,BC=2AD,∴=.∵AB=10,∴AD=×10=4,BD=10-4=6,∴BC=8,∴CD==2.【點睛】本題考查了直角三角形中的有關問題,主要考查了勾股定理,三角函數(shù)的有關計算.熟練掌握三角函數(shù)的概念是解題關鍵.26、(1)證明見解析;(2)256【解析】
(1)先利用切線的性質(zhì)得出∠CAD+∠BAD=90°,再利用直徑所對的圓周角是直角得出∠B+∠BAD=90°,從而可證明∠B=∠EAD,進而得出∠EAD=∠CAD,進而判斷出△ADF≌△ADC,即可得出結(jié)論;(2)過點D作DG⊥AE,垂足為G.依據(jù)等腰三角形的性質(zhì)可得到EG=AG=1,然后在Rt△GEG中,依據(jù)銳角三角函數(shù)的定義可得到DG的長,然后依據(jù)勾股定理可得到AD=ED=2,然后在Rt△ABD中,依據(jù)銳角三角函數(shù)的定義可求得AB的長,從而可求得⊙O的半徑的長.【詳解】(1)∵AC是⊙O的切線,∴BA⊥AC,∴∠CAD+∠BAD=90°,∵AB是⊙O的直徑,∴∠ADB=90°,∴∠B+∠BAD=90°,∴∠CAD=∠B,∵DA=DE,∴∠EAD=∠E,又∵∠B=∠E,∴∠B=∠EAD,∴∠EAD=∠CAD,在△ADF和△ADC中,∠ADF=∠ADC=90°,AD=AD,∠FAD=∠CAD,∴△AD
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年江西現(xiàn)代職業(yè)技術學院高職單招職業(yè)技能測試近5年常考版參考題庫含答案解析
- 2025年梅河口康美職業(yè)技術學院高職單招高職單招英語2016-2024歷年頻考點試題含答案解析
- 2025年昆明衛(wèi)生職業(yè)學院高職單招語文2018-2024歷年參考題庫頻考點含答案解析
- 2025年注冊城鄉(xiāng)規(guī)劃師《城鄉(xiāng)規(guī)劃原理》真題及答案
- 幼兒園祖國主題活動策劃方案模板五篇
- 零件買賣合同協(xié)議書
- 未來養(yǎng)老行業(yè)面臨的挑戰(zhàn)與機遇
- 全球民用航空運輸市場現(xiàn)狀分析
- 物品運輸合同協(xié)議書
- 建設工程基本建設貸款合同
- 2025福建新華發(fā)行(集團)限責任公司校園招聘30人高頻重點提升(共500題)附帶答案詳解
- 山東鐵投集團招聘筆試沖刺題2025
- 圖像敘事的跨學科視野-洞察分析
- 2025年中考英語總復習:閱讀理解練習題30篇(含答案解析)
- 陜西省英語中考試卷與參考答案(2024年)
- 基于OBE理念的世界現(xiàn)代史教學與學生歷史思維培養(yǎng)探究
- 施工現(xiàn)場揚塵污染治理巡查記錄
- 2024年列車員技能競賽理論考試題庫500題(含答案)
- 中南大學《藥理學》2023-2024學年第一學期期末試卷
- 《無人機測繪技術》項目3任務2無人機正射影像數(shù)據(jù)處理
- 《ISO 55013-2024 資產(chǎn)管理-數(shù)據(jù)資產(chǎn)管理指南》專業(yè)解讀和應用指導材料(雷澤佳編制-2024B0)-121-240
評論
0/150
提交評論