2023-2024學年重慶市兩江新區(qū)中考二模數(shù)學試題含解析_第1頁
2023-2024學年重慶市兩江新區(qū)中考二模數(shù)學試題含解析_第2頁
2023-2024學年重慶市兩江新區(qū)中考二模數(shù)學試題含解析_第3頁
2023-2024學年重慶市兩江新區(qū)中考二模數(shù)學試題含解析_第4頁
2023-2024學年重慶市兩江新區(qū)中考二模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年重慶市兩江新區(qū)中考二模數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.九年級學生去距學校10km的博物館參觀,一部分學生騎自行車先走,過了20min后,其余學生乘汽車出發(fā),結果他們同時到達.已知汽車的速度是騎車學生速度的2倍,求騎車學生的速度.設騎車學生的速度為xkm/h,則所列方程正確的是()A. B.C. D.2.李老師為了了解學生暑期在家的閱讀情況,隨機調查了20名學生某一天的閱讀小時數(shù),具體情況統(tǒng)計如下:閱讀時間(小時)22.533.54學生人數(shù)(名)12863則關于這20名學生閱讀小時數(shù)的說法正確的是()A.眾數(shù)是8 B.中位數(shù)是3C.平均數(shù)是3 D.方差是0.343.若正六邊形的半徑長為4,則它的邊長等于()A.4 B.2 C. D.4.下列運算,結果正確的是()A.m2+m2=m4 B.2m2n÷mn=4mC.(3mn2)2=6m2n4 D.(m+2)2=m2+45.如圖,點M為?ABCD的邊AB上一動點,過點M作直線l垂直于AB,且直線l與?ABCD的另一邊交于點N.當點M從A→B勻速運動時,設點M的運動時間為t,△AMN的面積為S,能大致反映S與t函數(shù)關系的圖象是()A. B. C. D.6.在3,0,-2,-2四個數(shù)中,最小的數(shù)是()A.3 B.0 C.-2 D.-27.某射擊選手10次射擊成績統(tǒng)計結果如下表,這10次成績的眾數(shù)、中位數(shù)分別是()成績(環(huán))78910次數(shù)1432A.8、8 B.8、8.5 C.8、9 D.8、108.如圖,△ABC中,AD⊥BC,AB=AC,∠BAD=30°,且AD=AE,則∠EDC等于()A.10° B.12.5° C.15° D.20°9.方程的解是()A. B. C. D.10.在下列二次函數(shù)中,其圖象的對稱軸為的是A. B. C. D.11.一組數(shù)據(jù):1、2、2、3,若添加一個數(shù)據(jù)2,則發(fā)生變化的統(tǒng)計量是A.平均數(shù) B.中位數(shù) C.眾數(shù) D.方差12.如圖,在△ABC中,cosB=,sinC=,AC=5,則△ABC的面積是()A. B.12 C.14 D.21二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知二次函數(shù)y=x2,當x>0時,y隨x的增大而_____(填“增大”或“減小”).14.若關于x的一元二次方程x2+2x﹣m2﹣m=0(m>0),當m=1、2、3、…、2018時,相應的一元二次方程的兩個根分別記為α1、β1,α2、β2,…,α2018、β2018,則:的值為_____.15.在△ABC中,∠A:∠B:∠C=1:2:3,它的最小邊的長是2cm,則它的最大邊的長是_____cm.16.如圖所示:在平面直角坐標系中,△OCB的外接圓與y軸交于A(0,),∠OCB=60°,∠COB=45°,則OC=.17.關于x的一元二次方程(k-1)x2+6x+k2-k=0的一個根是0,則k的值是______.18.“五一”期間,一批九年級同學包租一輛面包車前去竹海游覽,面包車的租金為300元,出發(fā)時,又增加了4名同學,且租金不變,這樣每個同學比原來少分攤了20元車費.若設參加游覽的同學一共有x人,為求x,可列方程_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)化簡分式,并從0、1、2、3這四個數(shù)中取一個合適的數(shù)作為x的值代入求值.20.(6分)某中學九(1)班為了了解全班學生喜歡球類活動的情況,采取全面調查的方法,從足球、乒乓球、籃球、排球等四個方面調查了全班學生的興趣愛好,根據(jù)調查的結果組建了4個興趣小組,并繪制成如圖所示的兩幅不完整的統(tǒng)計圖(如圖①,②,要求每位學生只能選擇一種自己喜歡的球類),請你根據(jù)圖中提供的信息解答下列問題:(1)九(1)班的學生人數(shù)為,并把條形統(tǒng)計圖補充完整;(2)扇形統(tǒng)計圖中m=,n=,表示“足球”的扇形的圓心角是度;(3)排球興趣小組4名學生中有3男1女,現(xiàn)在打算從中隨機選出2名學生參加學校的排球隊,請用列表或畫樹狀圖的方法求選出的2名學生恰好是1男1女的概率.21.(6分)某商場將每件進價為80元的某種商品原來按每件100元出售,一天可售出100件.后來經過市場調查,發(fā)現(xiàn)這種商品單價每降低1元,其銷量可增加10件.(1)求商場經營該商品原來一天可獲利潤多少元?(2)設后來該商品每件降價x元,商場一天可獲利潤y元.①若商場經營該商品一天要獲利潤2160元,則每件商品應降價多少元?②求出y與x之間的函數(shù)關系式,并通過畫該函數(shù)圖象的草圖,觀察其圖象的變化趨勢,結合題意寫出當x取何值時,商場獲利潤不少于2160元.22.(8分)已知:如圖,E,F(xiàn)是?ABCD的對角線AC上的兩點,BE∥DF.求證:AF=CE.23.(8分)如圖,△ABC中,AB=AC=4,D、E分別為AB、AC的中點,連接CD,過E作EF∥DC交BC的延長線于F;(1)求證:DE=CF;(2)若∠B=60°,求EF的長.24.(10分)已知,如圖直線l1的解析式為y=x+1,直線l2的解析式為y=ax+b(a≠0);這兩個圖象交于y軸上一點C,直線l2與x軸的交點B(2,0)(1)求a、b的值;(2)過動點Q(n,0)且垂直于x軸的直線與l1、l2分別交于點M、N都位于x軸上方時,求n的取值范圍;(3)動點P從點B出發(fā)沿x軸以每秒1個單位長的速度向左移動,設移動時間為t秒,當△PAC為等腰三角形時,直接寫出t的值.25.(10分)在矩形ABCD中,AB=6,AD=8,點E是邊AD上一點,EM⊥EC交AB于點M,點N在射線MB上,且AE是AM和AN的比例中項.如圖1,求證:∠ANE=∠DCE;如圖2,當點N在線段MB之間,聯(lián)結AC,且AC與NE互相垂直,求MN的長;連接AC,如果△AEC與以點E、M、N為頂點所組成的三角形相似,求DE的長.26.(12分)如圖,⊙O的直徑DF與弦AB交于點E,C為⊙O外一點,CB⊥AB,G是直線CD上一點,∠ADG=∠ABD.求證:AD?CE=DE?DF;說明:(1)如果你經歷反復探索,沒有找到解決問題的方法,請你把探索過程中的某種思路過程寫出來(要求至少寫3步);(2)在你經歷說明(1)的過程之后,可以從下列①、②、③中選取一個補充或更換已知條件,完成你的證明.①∠CDB=∠CEB;②AD∥EC;③∠DEC=∠ADF,且∠CDE=90°.27.(12分)如圖1,B(2m,0),C(3m,0)是平面直角坐標系中兩點,其中m為常數(shù),且m>0,E(0,n)為y軸上一動點,以BC為邊在x軸上方作矩形ABCD,使AB=2BC,畫射線OA,把△ADC繞點C逆時針旋轉90°得△A′D′C′,連接ED′,拋物線()過E,A′兩點.(1)填空:∠AOB=°,用m表示點A′的坐標:A′(,);(2)當拋物線的頂點為A′,拋物線與線段AB交于點P,且時,△D′OE與△ABC是否相似?說明理由;(3)若E與原點O重合,拋物線與射線OA的另一個交點為點M,過M作MN⊥y軸,垂足為N:①求a,b,m滿足的關系式;②當m為定值,拋物線與四邊形ABCD有公共點,線段MN的最大值為10,請你探究a的取值范圍.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】試題分析:設騎車學生的速度為xkm/h,則汽車的速度為2xkm/h,由題意得,.故選C.考點:由實際問題抽象出分式方程.2、B【解析】

A、根據(jù)眾數(shù)的定義找出出現(xiàn)次數(shù)最多的數(shù);B、根據(jù)中位數(shù)的定義將這組數(shù)據(jù)從小到大重新排列,求出最中間的2個數(shù)的平均數(shù),即可得出中位數(shù);C、根據(jù)加權平均數(shù)公式代入計算可得;D、根據(jù)方差公式計算即可.【詳解】解:A、由統(tǒng)計表得:眾數(shù)為3,不是8,所以此選項不正確;B、隨機調查了20名學生,所以中位數(shù)是第10個和第11個學生的閱讀小時數(shù),都是3,故中位數(shù)是3,所以此選項正確;C、平均數(shù)=,所以此選項不正確;D、S2=×[(2﹣3.35)2+2(2.5﹣3.35)2+8(3﹣3.35)2+6(3.5﹣3.35)2+3(4﹣3.35)2]==0.2825,所以此選項不正確;故選B.【點睛】本題考查方差;加權平均數(shù);中位數(shù);眾數(shù).3、A【解析】試題分析:正六邊形的中心角為360°÷6=60°,那么外接圓的半徑和正六邊形的邊長將組成一個等邊三角形,故正六邊形的半徑等于1,則正六邊形的邊長是1.故選A.考點:正多邊形和圓.4、B【解析】

直接利用積的乘方運算法則、合并同類項法則和單項式除以單項式運算法則計算得出答案.【詳解】A.m2+m2=2m2,故此選項錯誤;B.2m2n÷mn=4m,正確;C.(3mn2)2=9m2n4,故此選項錯誤;D.(m+2)2=m2+4m+4,故此選項錯誤.故答案選:B.【點睛】本題考查了乘方運算法則、合并同類項法則和單項式除以單項式運算法則,解題的關鍵是熟練的掌握乘方運算法則、合并同類項法則和單項式除以單項式運算法則.5、C【解析】分析:本題需要分兩種情況來進行計算得出函數(shù)解析式,即當點N和點D重合之前以及點M和點B重合之前,根據(jù)題意得出函數(shù)解析式.詳解:假設當∠A=45°時,AD=2,AB=4,則MN=t,當0≤t≤2時,AM=MN=t,則S=,為二次函數(shù);當2≤t≤4時,S=t,為一次函數(shù),故選C.點睛:本題主要考查的就是函數(shù)圖像的實際應用問題,屬于中等難度題型.解答這個問題的關鍵就是得出函數(shù)關系式.6、C【解析】

根據(jù)比較實數(shù)大小的方法進行比較即可.根據(jù)正數(shù)都大于0,負數(shù)都小于0,兩個負數(shù)絕對值大的反而小即可求解.【詳解】因為正數(shù)大于負數(shù),兩個負數(shù)比較大小,絕對值較大的數(shù)反而較小,所以-2<-2所以最小的數(shù)是-2,故選C.【點睛】此題主要考查了實數(shù)的大小的比較,正數(shù)都大于0,負數(shù)都小于0,兩個負數(shù)絕對值大的反而?。?、B【解析】

根據(jù)眾數(shù)和中位數(shù)的概念求解.【詳解】由表可知,8環(huán)出現(xiàn)次數(shù)最多,有4次,所以眾數(shù)為8環(huán);這10個數(shù)據(jù)的中位數(shù)為第5、6個數(shù)據(jù)的平均數(shù),即中位數(shù)為=8.5(環(huán)),故選:B.【點睛】本題考查了眾數(shù)和中位數(shù)的知識,一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù);將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕校绻麛?shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).8、C【解析】試題分析:根據(jù)三角形的三線合一可求得∠DAC及∠ADE的度數(shù),根據(jù)∠EDC=90°-∠ADE即可得到答案.∵△ABC中,AD⊥BC,AB=AC,∠BAD=30°,∴∠DAC=∠BAD=30°,∵AD=AE(已知),∴∠ADE=75°∴∠EDC=90°-∠ADE=15°.故選C.考點:本題主要考查了等腰三角形的性質,三角形內角和定理點評:解答本題的關鍵是掌握等腰三角形的頂角平分線、底邊上的中線、底邊上的高相互重合.9、D【解析】

按照解分式方程的步驟進行計算,注意結果要檢驗.【詳解】解:經檢驗x=4是原方程的解故選:D【點睛】本題考查解分式方程,注意結果要檢驗.10、A【解析】y=(x+2)2的對稱軸為x=–2,A正確;y=2x2–2的對稱軸為x=0,B錯誤;y=–2x2–2的對稱軸為x=0,C錯誤;y=2(x–2)2的對稱軸為x=2,D錯誤.故選A.1.11、D【解析】

解:A.原來數(shù)據(jù)的平均數(shù)是2,添加數(shù)字2后平均數(shù)仍為2,故A與要求不符;B.原來數(shù)據(jù)的中位數(shù)是2,添加數(shù)字2后中位數(shù)仍為2,故B與要求不符;C.原來數(shù)據(jù)的眾數(shù)是2,添加數(shù)字2后眾數(shù)仍為2,故C與要求不符;D.原來數(shù)據(jù)的方差==,添加數(shù)字2后的方差==,故方差發(fā)生了變化.故選D.12、A【解析】

根據(jù)已知作出三角形的高線AD,進而得出AD,BD,CD,的長,即可得出三角形的面積.【詳解】解:過點A作AD⊥BC,∵△ABC中,cosB=,sinC=,AC=5,

∴cosB==,

∴∠B=45°,

∵sinC===,

∴AD=3,

∴CD==4,

∴BD=3,

則△ABC的面積是:×AD×BC=×3×(3+4)=.

故選:A.【點睛】此題主要考查了解直角三角形的知識,作出AD⊥BC,進而得出相關線段的長度是解決問題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、增大.【解析】

根據(jù)二次函數(shù)的增減性可求得答案【詳解】∵二次函數(shù)y=x2的對稱軸是y軸,開口方向向上,∴當y隨x的增大而增大.故答案為:增大.【點睛】本題考查的知識點是二次函數(shù)的性質,解題的關鍵是熟練的掌握二次函數(shù)的性質.14、.【解析】

利用根與系數(shù)的關系得到α1+β1=-2,α1β1=-1×2;α2+β2=-2,α2β2=-2×3;…α2018+β2018=-2,α2018β2018=-2018×1.把原式變形,再代入,即可求出答案.【詳解】∵x2+2x-m2-m=0,m=1,2,3,…,2018,∴由根與系數(shù)的關系得:α1+β1=-2,α1β1=-1×2;α2+β2=-2,α2β2=-2×3;…α2018+β2018=-2,α2018β2018=-2018×1.∴原式===2×()=2×(1-)=,故答案為.【點睛】本題考查了根與系數(shù)的關系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時,x1+x2=-,x1x2=.15、1.【解析】

根據(jù)在△ABC中,∠A:∠B:∠C=1:2:3,三角形內角和等于180°可得∠A,∠B,∠C的度數(shù),它的最小邊的長是2cm,從而可以求得最大邊的長.【詳解】∵在△ABC中,∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180∴∠A=30∵最小邊的長是2cm,∴a=2.∴c=2a=1cm.故答案為:1.【點睛】考查含30度角的直角三角形的性質,掌握30度角所對的直角邊等于斜邊的一半是解題的關鍵.16、1+【解析】試題分析:連接AB,由圓周角定理知AB必過圓心M,Rt△ABO中,易知∠BAO=∠OCB=60°,已知了OA=,即可求得OB的長;過B作BD⊥OC,通過解直角三角形即可求得OD、BD、CD的長,進而由OC=OD+CD求出OC的長.解:連接AB,則AB為⊙M的直徑.Rt△ABO中,∠BAO=∠OCB=60°,∴OB=OA=×=.過B作BD⊥OC于D.Rt△OBD中,∠COB=45°,則OD=BD=OB=.Rt△BCD中,∠OCB=60°,則CD=BD=1.∴OC=CD+OD=1+.故答案為1+.點評:此題主要考查了圓周角定理及解直角三角形的綜合應用能力,能夠正確的構建出與已知和所求相關的直角三角形是解答此題的關鍵.17、2.【解析】試題解析:由于關于x的一元二次方程的一個根是2,把x=2代入方程,得,解得,k2=2,k2=2當k=2時,由于二次項系數(shù)k﹣2=2,方程不是關于x的二次方程,故k≠2.所以k的值是2.故答案為2.18、﹣=1.【解析】原有的同學每人分擔的車費應該為,而實際每人分擔的車費為,方程應該表示為:﹣=1.故答案是:﹣=1.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、x取0時,為1或x取1時,為2【解析】試題分析:利用分式的運算,先對分式化簡單,再選擇使分式有意義的數(shù)代入求值即可.試題解析:解:原式=[]===x+1,∵x1-4≠0,x-2≠0,∴x≠1且x≠-1且x≠2,當x=0時,原式=1.或當x=1時,原式=2.20、(1)4,補全統(tǒng)計圖見詳解.(2)10;20;72.(3)見詳解.【解析】

(1)根據(jù)喜歡籃球的人數(shù)與所占的百分比列式計算即可求出學生的總人數(shù),再求出喜歡足球的人數(shù),然后補全統(tǒng)計圖即可;

(2)分別求出喜歡排球、喜歡足球的百分比即可得到m、n的值,用喜歡足球的人數(shù)所占的百分比乘以360°即可;

(3)畫出樹狀圖,然后根據(jù)概率公式列式計算即可得解.【詳解】解:(1)九(1)班的學生人數(shù)為:12÷30%=40(人),喜歡足球的人數(shù)為:40?4?12?16=40?32=8(人),補全統(tǒng)計圖如圖所示;(2)∵×100%=10%,×100%=20%,∴m=10,n=20,表示“足球”的扇形的圓心角是20%×360°=72°;故答案為(1)40;(2)10;20;72;(3)根據(jù)題意畫出樹狀圖如下:一共有12種情況,恰好是1男1女的情況有6種,∴P(恰好是1男1女)==.21、(1)一天可獲利潤2000元;(2)①每件商品應降價2元或8元;②當2≤x≤8時,商店所獲利潤不少于2160元.【解析】:(1)原來一天可獲利:20×100=2000元;(2)①y=(20-x)(100+10x)=-10(x2-10x-200),由-10(x2-10x-200)=2160,解得:x1=2,x2=8,∴每件商品應降價2或8元;②觀察圖像可得22、參見解析.【解析】分析:先證∠ACB=∠CAD,再證出△BEC≌△DFA,從而得出CE=AF.詳解:證明:平行四邊形中,,,.又,,,點睛:本題利用了平行四邊形的性質,全等三角形的判定和性質.23、證明見解析;.【解析】

根據(jù)兩組對邊分別平行的四邊形是平行四邊形即可證明;只要求出CD即可解決問題.【詳解】證明:、E分別是AB、AC的中點,又四邊形CDEF為平行四邊形.,,又為AB中點,在中,,,四邊形CDEF是平行四邊形,.【點睛】本題考查平行四邊形的判定和性質、勾股定理、三角形的中位線定理等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.24、(1)a=﹣;(2)﹣1<n<2;(3)滿足條件的時間t為1s,2s,或(3+)或(3﹣)s.【解析】試題分析:(1)、根據(jù)題意求出點C的坐標,然后將點C和點B的坐標代入直線解析式求出a和b的值;(2)、根據(jù)題意可知點Q在點A和點B之間,從而求出n的取值范圍;(3)、本題需要分幾種情況分別來進行計算,即AC=P1C,P2A=P2C和AP3=AC三種情況分別進行計算得出t的值.試題解析:(1)、解:∵點C是直線l1:y=x+1與軸的交點,∴C(0,1),∵點C在直線l2上,∴b=1,∴直線l2的解析式為y=ax+1,∵點B在直線l2上,∴2a+1=0,∴a=﹣;(2)、解:由(1)知,l1的解析式為y=x+1,令y=0,∴x=﹣1,由圖象知,點Q在點A,B之間,∴﹣1<n<2(3)、解:如圖,∵△PAC是等腰三角形,∴①點x軸正半軸上時,當AC=P1C時,∵CO⊥x軸,∴OP1=OA=1,∴BP1=OB﹣OP1=2﹣1=1,∴1÷1=1s,②當P2A=P2C時,易知點P2與O重合,∴BP2=OB=2,∴2÷1=2s,③點P在x軸負半軸時,AP3=AC,∵A(﹣1,0),C(0,1),∴AC=,∴AP3=,∴BP3=OB+OA+AP3=3+或BP3=OB+OA﹣AP3=3﹣,∴(3+)÷1=(3+)s,或(3﹣)÷1=(3﹣)s,即:滿足條件的時間t為1s,2s,或(3+)或(3﹣)s.點睛:本題主要考查的就是一次函數(shù)的性質、等腰三角形的性質和動點問題,解決這個問題的關鍵就是要能夠根據(jù)題意進行分類討論,從而得出答案.在解決一次函數(shù)和等腰三角形問題時,我們一定要根據(jù)等腰三角形的性質來進行分類討論,可以利用圓規(guī)來作出圖形,然后根據(jù)實際題目來求出答案.25、(1)見解析;(2);(1)DE的長分別為或1.【解析】

(1)由比例中項知,據(jù)此可證△AME∽△AEN得∠AEM=∠ANE,再證∠AEM=∠DCE可得答案;(2)先證∠ANE=∠EAC,結合∠ANE=∠DCE得∠DCE=∠EAC,從而知,據(jù)此求得AE=8﹣=,由(1)得∠AEM=∠DCE,據(jù)此知,求得AM=,由求得MN=;(1)分∠ENM=∠EAC和∠ENM=∠ECA兩種情況分別求解可得.【詳解】解:(1)∵AE是AM和AN的比例中項∴,∵∠A=∠A,∴△AME∽△AEN,∴∠AEM=∠ANE,∵∠D=90°,∴∠DCE+∠DEC=90°,∵EM⊥BC,∴∠AEM+∠DEC=90°,∴∠AEM=∠DCE,∴∠ANE=∠DCE;(2)∵AC與NE互相垂直,∴∠EAC+∠AEN=90°,∵∠BAC=90°,∴∠ANE+∠AEN=90°,∴∠ANE=∠EAC,由(1)得∠ANE=∠DCE,∴∠DCE=∠EAC,∴tan∠DCE=tan∠DAC,∴,∵DC=AB=6,AD=8,∴DE=,∴AE=8﹣=,由(1)得∠AEM=∠DCE,∴tan∠AEM=tan∠DCE,∴,∴AM=,∵,∴AN=,∴MN=;(1)∵∠NME=∠MAE+∠AEM,∠AEC=∠D+∠DCE,又∠MAE=∠D=90°,由(1)得∠AEM=∠DCE,∴∠AEC=∠NME,當△AEC與以點E、M、N為頂點所組成的三角形相似時①∠ENM=∠EAC,如圖2,∴∠ANE=∠EAC,由(2)得:DE=;②∠ENM=∠ECA,如圖1,過點E作EH⊥AC,垂足為點H,由(1)得∠ANE=∠DCE,∴∠ECA=∠DCE,∴HE=DE,又tan∠HAE=,設DE=1x,則HE=1x,AH=4x,AE=5x,又AE+DE=AD,∴5x+1x=8,解得x=1,∴DE=1x=1,綜上所述,DE的長分別為或1.【點睛】本題是相似三角形的綜合問題,解題的關鍵是掌握相似三角形的判定與性質、三角函數(shù)的應用等知識點.26、(1)見解析;(2)見解析.【解析】

連接AF,由直徑所對的圓周角是直角、同弧所對的圓周角相等的性質,證得直線CD是⊙O的切線,若證AD?CE=DE?DF,只要征得△ADF∽△DEC即可.在第一問中只能證得∠EDC=∠DAF=90°,所以在第二問中只要證得∠DEC=∠ADF即可解答此題.【詳解】(1)連接AF,∵DF是⊙O的直徑,∴∠DAF=90°,∴∠F+∠ADF=90°,∵∠F=∠ABD,∠ADG=∠ABD,∴∠F=∠ADG,∴∠ADF+∠ADG=90°∴直線CD是⊙O的切線∴∠EDC=90°,∴∠EDC=∠DAF=90°;(2)選取①完成證明∵直線CD是⊙O的切線,∴∠CDB=∠A.∵∠CDB=∠CEB,∴∠A=∠CEB.∴AD∥EC.∴∠DEC=∠ADF.∵∠EDC=∠DAF=90°,∴△ADF∽△DEC.∴AD:DE=DF:EC.∴AD?CE=DE?D

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論