2024屆廣東省鶴山一中高三沖刺模擬數(shù)學(xué)試卷含解析_第1頁
2024屆廣東省鶴山一中高三沖刺模擬數(shù)學(xué)試卷含解析_第2頁
2024屆廣東省鶴山一中高三沖刺模擬數(shù)學(xué)試卷含解析_第3頁
2024屆廣東省鶴山一中高三沖刺模擬數(shù)學(xué)試卷含解析_第4頁
2024屆廣東省鶴山一中高三沖刺模擬數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆廣東省鶴山一中高三沖刺模擬數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.將函數(shù)的圖像向左平移個(gè)單位得到函數(shù)的圖像,則的最小值為()A. B. C. D.2.設(shè),則復(fù)數(shù)的模等于()A. B. C. D.3.設(shè)遞增的等比數(shù)列的前n項(xiàng)和為,已知,,則()A.9 B.27 C.81 D.4.已知復(fù)數(shù)z滿足(i為虛數(shù)單位),則在復(fù)平面內(nèi)復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.已知雙曲線的離心率為,拋物線的焦點(diǎn)坐標(biāo)為,若,則雙曲線的漸近線方程為()A. B.C. D.6.已知數(shù)列滿足:,則()A.16 B.25 C.28 D.337.使得的展開式中含有常數(shù)項(xiàng)的最小的n為()A. B. C. D.8.“哥德巴赫猜想”是近代三大數(shù)學(xué)難題之一,其內(nèi)容是:一個(gè)大于2的偶數(shù)都可以寫成兩個(gè)質(zhì)數(shù)(素?cái)?shù))之和,也就是我們所謂的“1+1”問題.它是1742年由數(shù)學(xué)家哥德巴赫提出的,我國數(shù)學(xué)家潘承洞、王元、陳景潤等在哥德巴赫猜想的證明中做出相當(dāng)好的成績.若將6拆成兩個(gè)正整數(shù)的和,則拆成的和式中,加數(shù)全部為質(zhì)數(shù)的概率為()A. B. C. D.9.下列函數(shù)中,既是奇函數(shù),又是上的單調(diào)函數(shù)的是()A. B.C. D.10.設(shè)復(fù)數(shù)滿足(為虛數(shù)單位),則復(fù)數(shù)的共軛復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.已知平面平面,且是正方形,在正方形內(nèi)部有一點(diǎn),滿足與平面所成的角相等,則點(diǎn)的軌跡長度為()A. B.16 C. D.12.小張家訂了一份報(bào)紙,送報(bào)人可能在早上之間把報(bào)送到小張家,小張離開家去工作的時(shí)間在早上之間.用表示事件:“小張?jiān)陔x開家前能得到報(bào)紙”,設(shè)送報(bào)人到達(dá)的時(shí)間為,小張離開家的時(shí)間為,看成平面中的點(diǎn),則用幾何概型的公式得到事件的概率等于()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在的二項(xiàng)展開式中,所有項(xiàng)的系數(shù)之和為1024,則展開式常數(shù)項(xiàng)的值等于_______.14.一個(gè)房間的地面是由12個(gè)正方形所組成,如圖所示.今想用長方形瓷磚鋪滿地面,已知每一塊長方形瓷磚可以覆蓋兩塊相鄰的正方形,即或,則用6塊瓷磚鋪滿房間地面的方法有_______種.15.設(shè)函數(shù),,其中.若存在唯一的整數(shù)使得,則實(shí)數(shù)的取值范圍是_____.16.“石頭、剪子、布”是大家熟悉的二人游戲,其規(guī)則是:在石頭、剪子和布中,二人各隨機(jī)選出一種,若相同則平局;若不同,則石頭克剪子,剪子克布,布克石頭.甲、乙兩人玩一次該游戲,則甲不輸?shù)母怕适莀_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知.(1)求的單調(diào)區(qū)間;(2)當(dāng)時(shí),求證:對(duì)于,恒成立;(3)若存在,使得當(dāng)時(shí),恒有成立,試求的取值范圍.18.(12分)在中,角A、B、C的對(duì)邊分別為a、b、c,且.(1)求角A的大??;(2)若,的平分線與交于點(diǎn)D,與的外接圓交于點(diǎn)E(異于點(diǎn)A),,求的值.19.(12分)已知橢圓:()的離心率為,且橢圓的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合.過點(diǎn)的直線交橢圓于,兩點(diǎn),為坐標(biāo)原點(diǎn).(1)若直線過橢圓的上頂點(diǎn),求的面積;(2)若,分別為橢圓的左、右頂點(diǎn),直線,,的斜率分別為,,,求的值.20.(12分)已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且(1)求數(shù)列{a(2)求數(shù)列{1Sn}的前21.(12分)已知拋物線的焦點(diǎn)也是橢圓的一個(gè)焦點(diǎn),與的公共弦的長為.(1)求的方程;(2)過點(diǎn)的直線與相交于、兩點(diǎn),與相交于、兩點(diǎn),且與同向,設(shè)在點(diǎn)處的切線與軸的交點(diǎn)為,證明:直線繞點(diǎn)旋轉(zhuǎn)時(shí),總是鈍角三角形;(3)為上的動(dòng)點(diǎn),、為長軸的兩個(gè)端點(diǎn),過點(diǎn)作的平行線交橢圓于點(diǎn),過點(diǎn)作的平行線交橢圓于點(diǎn),請(qǐng)問的面積是否為定值,并說明理由.22.(10分)一種游戲的規(guī)則為拋擲一枚硬幣,每次正面向上得2分,反面向上得1分.(1)設(shè)拋擲4次的得分為,求變量的分布列和數(shù)學(xué)期望.(2)當(dāng)游戲得分為時(shí),游戲停止,記得分的概率和為.①求;②當(dāng)時(shí),記,證明:數(shù)列為常數(shù)列,數(shù)列為等比數(shù)列.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

根據(jù)三角函數(shù)的平移求出函數(shù)的解析式,結(jié)合三角函數(shù)的性質(zhì)進(jìn)行求解即可.【詳解】將函數(shù)的圖象向左平移個(gè)單位,得到,此時(shí)與函數(shù)的圖象重合,則,即,,當(dāng)時(shí),取得最小值為,故選:.【點(diǎn)睛】本題主要考查三角函數(shù)的圖象和性質(zhì),利用三角函數(shù)的平移關(guān)系求出解析式是解決本題的關(guān)鍵.2、C【解析】

利用復(fù)數(shù)的除法運(yùn)算法則進(jìn)行化簡,再由復(fù)數(shù)模的定義求解即可.【詳解】因?yàn)?所以,由復(fù)數(shù)模的定義知,.故選:C【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算法則和復(fù)數(shù)的模;考查運(yùn)算求解能力;屬于基礎(chǔ)題.3、A【解析】

根據(jù)兩個(gè)已知條件求出數(shù)列的公比和首項(xiàng),即得的值.【詳解】設(shè)等比數(shù)列的公比為q.由,得,解得或.因?yàn)?且數(shù)列遞增,所以.又,解得,故.故選:A【點(diǎn)睛】本題主要考查等比數(shù)列的通項(xiàng)和求和公式,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.4、D【解析】

根據(jù)復(fù)數(shù)運(yùn)算,求得,再求其對(duì)應(yīng)點(diǎn)即可判斷.【詳解】,故其對(duì)應(yīng)點(diǎn)的坐標(biāo)為.其位于第四象限.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的運(yùn)算,以及復(fù)數(shù)對(duì)應(yīng)點(diǎn)的坐標(biāo),屬綜合基礎(chǔ)題.5、A【解析】

求出拋物線的焦點(diǎn)坐標(biāo),得到雙曲線的離心率,然后求解a,b關(guān)系,即可得到雙曲線的漸近線方程.【詳解】拋物線y2=2px(p>0)的焦點(diǎn)坐標(biāo)為(1,0),則p=2,又e=p,所以e2,可得c2=4a2=a2+b2,可得:ba,所以雙曲線的漸近線方程為:y=±.故選:A.【點(diǎn)睛】本題考查雙曲線的離心率以及雙曲線漸近線方程的求法,涉及拋物線的簡單性質(zhì)的應(yīng)用.6、C【解析】

依次遞推求出得解.【詳解】n=1時(shí),,n=2時(shí),,n=3時(shí),,n=4時(shí),,n=5時(shí),.故選:C【點(diǎn)睛】本題主要考查遞推公式的應(yīng)用,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.7、B【解析】二項(xiàng)式展開式的通項(xiàng)公式為,若展開式中有常數(shù)項(xiàng),則,解得,當(dāng)r取2時(shí),n的最小值為5,故選B【考點(diǎn)定位】本題考查二項(xiàng)式定理的應(yīng)用.8、A【解析】

列出所有可以表示成和為6的正整數(shù)式子,找到加數(shù)全部為質(zhì)數(shù)的只有,利用古典概型求解即可.【詳解】6拆成兩個(gè)正整數(shù)的和含有的基本事件有:(1,5),(2,4),(3,3),(4,2),(5,1),而加數(shù)全為質(zhì)數(shù)的有(3,3),根據(jù)古典概型知,所求概率為.故選:A.【點(diǎn)睛】本題主要考查了古典概型,基本事件,屬于容易題.9、C【解析】

對(duì)選項(xiàng)逐個(gè)驗(yàn)證即得答案.【詳解】對(duì)于,,是偶函數(shù),故選項(xiàng)錯(cuò)誤;對(duì)于,,定義域?yàn)椋谏喜皇菃握{(diào)函數(shù),故選項(xiàng)錯(cuò)誤;對(duì)于,當(dāng)時(shí),;當(dāng)時(shí),;又時(shí),.綜上,對(duì),都有,是奇函數(shù).又時(shí),是開口向上的拋物線,對(duì)稱軸,在上單調(diào)遞增,是奇函數(shù),在上是單調(diào)遞增函數(shù),故選項(xiàng)正確;對(duì)于,在上單調(diào)遞增,在上單調(diào)遞增,但,在上不是單調(diào)函數(shù),故選項(xiàng)錯(cuò)誤.故選:.【點(diǎn)睛】本題考查函數(shù)的基本性質(zhì),屬于基礎(chǔ)題.10、D【解析】

先把變形為,然后利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡,求出,得到其坐標(biāo)可得答案.【詳解】解:由,得,所以,其在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為,在第四象限故選:D【點(diǎn)睛】此題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,屬于基礎(chǔ)題.11、C【解析】

根據(jù)與平面所成的角相等,判斷出,建立平面直角坐標(biāo)系,求得點(diǎn)的軌跡方程,由此求得點(diǎn)的軌跡長度.【詳解】由于平面平面,且交線為,,所以平面,平面.所以和分別是直線與平面所成的角,所以,所以,即,所以.以為原點(diǎn)建立平面直角坐標(biāo)系如下圖所示,則,,設(shè)(點(diǎn)在第一象限內(nèi)),由得,即,化簡得,由于點(diǎn)在第一象限內(nèi),所以點(diǎn)的軌跡是以為圓心,半徑為的圓在第一象限的部分.令代入原的方程,解得,故,由于,所以,所以點(diǎn)的軌跡長度為.故選:C【點(diǎn)睛】本小題主要考查線面角的概念和運(yùn)用,考查動(dòng)點(diǎn)軌跡方程的求法,考查空間想象能力和邏輯推理能力,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于難題.12、D【解析】

這是幾何概型,畫出圖形,利用面積比即可求解.【詳解】解:事件發(fā)生,需滿足,即事件應(yīng)位于五邊形內(nèi),作圖如下:故選:D【點(diǎn)睛】考查幾何概型,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

利用展開式所有項(xiàng)系數(shù)的和得n=5,再利用二項(xiàng)式展開式的通項(xiàng)公式,求得展開式中的常數(shù)項(xiàng).【詳解】因?yàn)榈亩?xiàng)展開式中,所有項(xiàng)的系數(shù)之和為4n=1024,n=5,故的展開式的通項(xiàng)公式為Tr+1=C·35-r,令,解得r=4,可得常數(shù)項(xiàng)為T5=C·3=15,故填15.【點(diǎn)睛】本題主要考查了二項(xiàng)式定理的應(yīng)用、二項(xiàng)式系數(shù)的性質(zhì),二項(xiàng)式展開式的通項(xiàng)公式,屬于中檔題.14、11【解析】

將圖形中左側(cè)的兩列瓷磚的形狀先確定,再由此進(jìn)行分類,在每一類里面又分按兩種形狀的瓷磚的數(shù)量進(jìn)行分類,在其中會(huì)有相同元素的排列問題,需用到“縮倍法”.采用分類計(jì)數(shù)原理,求得總的方法數(shù).【詳解】(1)先貼如圖這塊瓷磚,然后再貼剩下的部分,按如下分類:5個(gè):,3個(gè),2個(gè):,1個(gè),4個(gè):,(2)左側(cè)兩列如圖貼磚,然后貼剩下的部分:3個(gè):,1個(gè),2個(gè):,綜上,一共有(種).故答案為:11.【點(diǎn)睛】本題考查了分類計(jì)數(shù)原理,排列問題,其中涉及到相同元素的排列,用到了“縮倍法”的思想.屬于中檔題.15、【解析】

根據(jù)分段函數(shù)的解析式畫出圖像,再根據(jù)存在唯一的整數(shù)使得數(shù)形結(jié)合列出臨界條件滿足的關(guān)系式求解即可.【詳解】解:函數(shù),且畫出的圖象如下:因?yàn)?且存在唯一的整數(shù)使得,故與在時(shí)無交點(diǎn),,得;又,過定點(diǎn)又由圖像可知,若存在唯一的整數(shù)使得時(shí),所以,存在唯一的整數(shù)使得所以.根據(jù)圖像可知,當(dāng)時(shí),恒成立.綜上所述,存在唯一的整數(shù)使得,此時(shí)故答案為:【點(diǎn)睛】本題主要考查了數(shù)形結(jié)合分析參數(shù)范圍的問題,需要根據(jù)題意分別分析定點(diǎn)右邊的整數(shù)點(diǎn)中為滿足條件的唯一整數(shù),再數(shù)形結(jié)合列出時(shí)的不等式求的范圍.屬于難題.16、【解析】

用樹狀圖法列舉出所有情況,得出甲不輸?shù)慕Y(jié)果數(shù),再計(jì)算即得.【詳解】由題得,甲、乙兩人玩一次該游戲,共有9種情況,其中甲不輸有6種可能,故概率為.故答案為:【點(diǎn)睛】本題考查隨機(jī)事件的概率,是基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)單調(diào)減區(qū)間為,單調(diào)增區(qū)間為;(2)詳見解析;(3).【解析】

試題分析:(1)對(duì)函數(shù)求導(dǎo)后,利用導(dǎo)數(shù)和單調(diào)性的關(guān)系,可求得函數(shù)的單調(diào)區(qū)間.(2)構(gòu)造函數(shù),利用導(dǎo)數(shù)求得函數(shù)在上遞減,且,則,故原不等式成立.(3)同(2)構(gòu)造函數(shù),對(duì)分成三類,討論函數(shù)的單調(diào)性、極值和最值,由此求得的取值范圍.試題解析:(1),當(dāng)時(shí),.解得.當(dāng)時(shí),解得.所以單調(diào)減區(qū)間為,單調(diào)增區(qū)間為.(2)設(shè),當(dāng)時(shí),由題意,當(dāng)時(shí),恒成立.,∴當(dāng)時(shí),恒成立,單調(diào)遞減.又,∴當(dāng)時(shí),恒成立,即.∴對(duì)于,恒成立.(3)因?yàn)椋桑?)知,當(dāng)時(shí),恒成立,即對(duì)于,,不存在滿足條件的;當(dāng)時(shí),對(duì)于,,此時(shí).∴,即恒成立,不存在滿足條件的;當(dāng)時(shí),令,可知與符號(hào)相同,當(dāng)時(shí),,,單調(diào)遞減.∴當(dāng)時(shí),,即恒成立.綜上,的取值范圍為.點(diǎn)睛:本題主要考查導(dǎo)數(shù)和單調(diào)區(qū)間,導(dǎo)數(shù)與不等式的證明,導(dǎo)數(shù)與恒成立問題的求解方法.第一問求函數(shù)的單調(diào)區(qū)間,這是導(dǎo)數(shù)問題的基本題型,也是基本功,先求定義域,然后求導(dǎo),要注意通分和因式分解.二、三兩問一個(gè)是恒成立問題,一個(gè)是存在性問題,要注意取值是最大值還是最小值.18、(1);(2)【解析】

(1)由,利用正弦定理轉(zhuǎn)化整理為,再利用余弦定理求解.(2)根據(jù),利用兩角和的余弦得到,利用數(shù)形結(jié)合,設(shè),在中,由正弦定理求得,在中,求得再求解.【詳解】(1)因?yàn)?,所以,即,即,所?(2)∵,.所以,從而.所以,.不妨設(shè),O為外接圓圓心則AO=1,,.在中,由正弦定理知,有.即;在中,由,,從而.所以.【點(diǎn)睛】本題主要考查平面向量的模的幾何意義,還考查了數(shù)形結(jié)合的方法,屬于中檔題.19、(1)(2)【解析】

(1)根據(jù)拋物線的焦點(diǎn)求得橢圓的焦點(diǎn),由此求得,結(jié)合橢圓離心率求得,進(jìn)而求得,從而求得橢圓的標(biāo)準(zhǔn)方程,求得橢圓上頂點(diǎn)的坐標(biāo),由此求得直線的方程.聯(lián)立直線的方程和橢圓方程,求得兩點(diǎn)的縱坐標(biāo),由此求得的面積.(2)求得兩點(diǎn)的坐標(biāo),設(shè)出直線的方程,聯(lián)立直線的方程和橢圓方程,寫出韋達(dá)定理,由此求得的值,根據(jù)在橢圓上求得的值,由此求得的值.【詳解】(1)因?yàn)閽佄锞€的焦點(diǎn)坐標(biāo)為,所以橢圓的右焦點(diǎn)的坐標(biāo)為,所以,因?yàn)闄E圓的離心率為,所以,解得,所以,故橢圓的標(biāo)準(zhǔn)方程為.其上頂點(diǎn)為,所以直線:,聯(lián)立,消去整理得,解得,,所以的面積.(2)由題知,,,設(shè),.由題還可知,直線的斜率不為0,故可設(shè):.由,消去,得,所以所以,又因?yàn)辄c(diǎn)在橢圓上,所以,所以.【點(diǎn)睛】本小題主要考查拋物線的焦點(diǎn),橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)、直線與橢圓,三角形的面積等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,化歸與轉(zhuǎn)化思想、數(shù)形結(jié)合思想、函數(shù)與方程思想.20、(1)an=2n【解析】

(1)先設(shè)出數(shù)列的公差為d,結(jié)合題中條件,求出首項(xiàng)和公差,即可得出結(jié)果.(2)利用裂項(xiàng)相消法求出數(shù)列的和.【詳解】解:(1)設(shè)公差為d的等差數(shù)列{an}且a1+a則有:a1解得:a1=3,所以:a(2)由于:an所以:Sn則:1S則:Tn=1【點(diǎn)睛】本題考查的知識(shí)要點(diǎn):數(shù)列的通項(xiàng)公式的求法及應(yīng)用,裂項(xiàng)相消法在數(shù)列求和中的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)化能力,屬于基礎(chǔ)題型.21、(1);(2)證明見解析;(3)是,理由見解析.【解析】

(1)根據(jù)兩個(gè)曲線的焦點(diǎn)相同,得到,再根據(jù)與的公共弦長為得出,可求出和的值,進(jìn)而可得出曲線的方程;(2)設(shè)點(diǎn),根據(jù)導(dǎo)數(shù)的幾何意義得到曲線在點(diǎn)處的切線方程,求出點(diǎn)的坐標(biāo),利用向量的數(shù)量積得出,則問題得以證明;(3)設(shè)直線,直線,、、,推導(dǎo)出以及,求出和,通過化簡計(jì)算可得出為定值,進(jìn)而可得出結(jié)論.【詳解】(1)由知其焦點(diǎn)的坐標(biāo)為,也是橢圓的一個(gè)焦點(diǎn),,①又與的公共弦的長為,與都關(guān)于軸對(duì)稱,且的方程為,由此易知與的公共點(diǎn)的坐標(biāo)為,,②聯(lián)立①②,得,,故的方程為;(2)如圖,,由得,在點(diǎn)處的切

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論