版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省惠陽高級中學2023-2024學年高考壓軸卷數學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的焦距為,過左焦點作斜率為1的直線交雙曲線的右支于點,若線段的中點在圓上,則該雙曲線的離心率為()A. B. C. D.2.函數的圖象大致是()A. B.C. D.3.已知雙曲線:的左右焦點分別為,,為雙曲線上一點,為雙曲線C漸近線上一點,,均位于第一象限,且,,則雙曲線的離心率為()A. B. C. D.4.已知平面和直線a,b,則下列命題正確的是()A.若∥,b∥,則∥ B.若,,則∥C.若∥,,則 D.若,b∥,則5.設,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件6.在直角坐標平面上,點的坐標滿足方程,點的坐標滿足方程則的取值范圍是()A. B. C. D.7.某學校調查了200名學生每周的自習時間(單位:小時),制成了如圖所示的頻率分布直方圖,其中自習時間的范圍是17.5,30],樣本數據分組為17.5,20),20,22.5),22.5,25),25,27.5),27.5,30).根據直方圖,這200名學生中每周的自習時間不少于22.5小時的人數是()A.56 B.60 C.140 D.1208.已知函數,若,則等于()A.-3 B.-1 C.3 D.09.函數在的圖象大致為A. B.C. D.10.已知是等差數列的前項和,,,則()A.85 B. C.35 D.11.一個封閉的棱長為2的正方體容器,當水平放置時,如圖,水面的高度正好為棱長的一半.若將該正方體繞下底面(底面與水平面平行)的某條棱任意旋轉,則容器里水面的最大高度為()A. B. C. D.12.已知點是拋物線的對稱軸與準線的交點,點為拋物線的焦點,點在拋物線上且滿足,若取得最大值時,點恰好在以為焦點的橢圓上,則橢圓的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標系中,雙曲線(,)的左頂點為A,右焦點為F,過F作x軸的垂線交雙曲線于點P,Q.若為直角三角形,則該雙曲線的離心率是______.14.已知數列的前項和為,,且滿足,則數列的前10項的和為______.15.某校為了解學生學習的情況,采用分層抽樣的方法從高一人、高二人、高三人中,抽取人進行問卷調查.已知高一被抽取的人數為,那么高三被抽取的人數為_______.16.已知隨機變量服從正態(tài)分布,,則__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設函數.(1)時,求的單調區(qū)間;(2)當時,設的最小值為,若恒成立,求實數t的取值范圍.18.(12分)某市環(huán)保部門對該市市民進行了一次垃圾分類知識的網絡問卷調查,每位市民僅有一次參加機會,通過隨機抽樣,得到參與問卷調查的100人的得分(滿分:100分)數據,統(tǒng)計結果如表所示:組別男235151812女051010713(1)若規(guī)定問卷得分不低于70分的市民稱為“環(huán)保關注者”,請完成答題卡中的列聯(lián)表,并判斷能否在犯錯誤概率不超過0.05的前提下,認為是否為“環(huán)保關注者”與性別有關?(2)若問卷得分不低于80分的人稱為“環(huán)保達人”.視頻率為概率.①在我市所有“環(huán)保達人”中,隨機抽取3人,求抽取的3人中,既有男“環(huán)保達人”又有女“環(huán)保達人”的概率;②為了鼓勵市民關注環(huán)保,針對此次的調查制定了如下獎勵方案:“環(huán)保達人”獲得兩次抽獎活動;其他參與的市民獲得一次抽獎活動.每次抽獎獲得紅包的金額和對應的概率.如下表:紅包金額(單位:元)1020概率現(xiàn)某市民要參加此次問卷調查,記(單位:元)為該市民參加間卷調查獲得的紅包金額,求的分布列及數學期望.附表及公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82819.(12分)已知點P在拋物線上,且點P的橫坐標為2,以P為圓心,為半徑的圓(O為原點),與拋物線C的準線交于M,N兩點,且.(1)求拋物線C的方程;(2)若拋物線的準線與y軸的交點為H.過拋物線焦點F的直線l與拋物線C交于A,B,且,求的值.20.(12分)已知橢圓:,不與坐標軸垂直的直線與橢圓交于,兩點.(Ⅰ)若線段的中點坐標為,求直線的方程;(Ⅱ)若直線過點,點滿足(,分別為直線,的斜率),求的值.21.(12分)貧困人口全面脫貧是全面建成小康社會的標志性指標.黨的十九屆四中全會提出“堅決打贏脫貧攻堅戰(zhàn),建立解決相對貧困的長效機制”對當前和下一個階段的扶貧工作進行了前瞻性的部署,即2020年要通過精準扶貧全面消除絕對貧困,實現(xiàn)全面建成小康社會的奮斗目標.為了響應黨的號召,某市對口某貧困鄉(xiāng)鎮(zhèn)開展扶貧工作.對某種農產品加工生產銷售進行指導,經調查知,在一個銷售季度內,每售出一噸該產品獲利5萬元,未售出的商品,每噸虧損2萬元.經統(tǒng)計,兩市場以往100個銷售周期該產品的市場需求量的頻數分布如下表:市場:需求量(噸)90100110頻數205030市場:需求量(噸)90100110頻數106030把市場需求量的頻率視為需求量的概率,設該廠在下個銷售周期內生產噸該產品,在、兩市場同時銷售,以(單位:噸)表示下一個銷售周期兩市場的需求量,(單位:萬元)表示下一個銷售周期兩市場的銷售總利潤.(1)求的概率;(2)以銷售利潤的期望為決策依據,確定下個銷售周期內生產量噸還是噸?并說明理由.22.(10分)百年大計,教育為本.某校積極響應教育部號召,不斷加大拔尖人才的培養(yǎng)力度,為清華、北大等排名前十的名校輸送更多的人才.該校成立特長班進行專項培訓.據統(tǒng)計有如下表格.(其中表示通過自主招生獲得降分資格的學生人數,表示被清華、北大等名校錄取的學生人數)年份(屆)2014201520162017201841495557638296108106123(1)通過畫散點圖發(fā)現(xiàn)與之間具有線性相關關系,求關于的線性回歸方程;(保留兩位有效數字)(2)若已知該校2019年通過自主招生獲得降分資格的學生人數為61人,預測2019年高考該??既嗣5娜藬?;(3)若從2014年和2018年考人名校的學生中采用分層抽樣的方式抽取出5個人回校宣傳,在選取的5個人中再選取2人進行演講,求進行演講的兩人是2018年畢業(yè)的人數的分布列和期望.參考公式:,參考數據:,,,
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
設線段的中點為,判斷出點的位置,結合雙曲線的定義,求得雙曲線的離心率.【詳解】設線段的中點為,由于直線的斜率是,而圓,所以.由于是線段的中點,所以,而,根據雙曲線的定義可知,即,即.故選:C【點睛】本小題主要考查雙曲線的定義和離心率的求法,考查直線和圓的位置關系,考查數形結合的數學思想方法,屬于中檔題.2、A【解析】
根據復合函數的單調性,同增異減以及采用排除法,可得結果.【詳解】當時,,由在遞增,所以在遞增又是增函數,所以在遞增,故排除B、C當時,若,則所以在遞減,而是增函數所以在遞減,所以A正確,D錯誤故選:A【點睛】本題考查具體函數的大致圖象的判斷,關鍵在于對復合函數單調性的理解,記住常用的結論:增+增=增,增-減=增,減+減=減,復合函數單調性同增異減,屬中檔題.3、D【解析】由雙曲線的方程的左右焦點分別為,為雙曲線上的一點,為雙曲線的漸近線上的一點,且都位于第一象限,且,可知為的三等分點,且,點在直線上,并且,則,,設,則,解得,即,代入雙曲線的方程可得,解得,故選D.點睛:本題考查了雙曲線的幾何性質,離心率的求法,考查了轉化思想以及運算能力,雙曲線的離心率是雙曲線最重要的幾何性質,求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據一個條件得到關于的齊次式,轉化為的齊次式,然后轉化為關于的方程(不等式),解方程(不等式),即可得(的取值范圍).4、C【解析】
根據線面的位置關系,結合線面平行的判定定理、平行線的性質進行判斷即可.【詳解】A:當時,也可以滿足∥,b∥,故本命題不正確;B:當時,也可以滿足,,故本命題不正確;C:根據平行線的性質可知:當∥,,時,能得到,故本命題是正確的;D:當時,也可以滿足,b∥,故本命題不正確.故選:C【點睛】本題考查了線面的位置關系,考查了平行線的性質,考查了推理論證能力.5、B【解析】
先解不等式化簡兩個條件,利用集合法判斷充分必要條件即可【詳解】解不等式可得,解絕對值不等式可得,由于為的子集,據此可知“”是“”的必要不充分條件.故選:B【點睛】本題考查了必要不充分條件的判定,考查了學生數學運算,邏輯推理能力,屬于基礎題.6、B【解析】
由點的坐標滿足方程,可得在圓上,由坐標滿足方程,可得在圓上,則求出兩圓內公切線的斜率,利用數形結合可得結果.【詳解】點的坐標滿足方程,在圓上,在坐標滿足方程,在圓上,則作出兩圓的圖象如圖,設兩圓內公切線為與,由圖可知,設兩圓內公切線方程為,則,圓心在內公切線兩側,,可得,,化為,,即,,的取值范圍,故選B.【點睛】本題主要考查直線的斜率、直線與圓的位置關系以及數形結合思想的應用,屬于綜合題.數形結合是根據數量與圖形之間的對應關系,通過數與形的相互轉化來解決數學問題的一種重要思想方法,尤其在解決選擇題、填空題時發(fā)揮著奇特功效,大大提高了解題能力與速度.運用這種方法的關鍵是運用這種方法的關鍵是正確作出曲線圖象,充分利用數形結合的思想方法能夠使問題化難為簡,并迎刃而解.7、C【解析】
試題分析:由題意得,自習時間不少于小時的頻率為,故自習時間不少于小時的頻率為,故選C.考點:頻率分布直方圖及其應用.8、D【解析】分析:因為題設中給出了的值,要求的值,故應考慮兩者之間滿足的關系.詳解:由題設有,故有,所以,從而,故選D.點睛:本題考查函數的表示方法,解題時注意根據問題的條件和求解的結論之間的關系去尋找函數的解析式要滿足的關系.9、A【解析】
因為,所以排除C、D.當從負方向趨近于0時,,可得.故選A.10、B【解析】
將已知條件轉化為的形式,求得,由此求得.【詳解】設公差為,則,所以,,,.故選:B【點睛】本小題主要考查等差數列通項公式的基本量計算,考查等差數列前項和的計算,屬于基礎題.11、B【解析】
根據已知可知水面的最大高度為正方體面對角線長的一半,由此得到結論.【詳解】正方體的面對角線長為,又水的體積是正方體體積的一半,且正方體繞下底面(底面與水平面平行)的某條棱任意旋轉,所以容器里水面的最大高度為面對角線長的一半,即最大水面高度為,故選B.【點睛】本題考查了正方體的幾何特征,考查了空間想象能力,屬于基礎題.12、B【解析】
設,利用兩點間的距離公式求出的表達式,結合基本不等式的性質求出的最大值時的點坐標,結合橢圓的定義以及橢圓的離心率公式求解即可.【詳解】設,因為是拋物線的對稱軸與準線的交點,點為拋物線的焦點,所以,則,當時,,當時,,當且僅當時取等號,此時,,點在以為焦點的橢圓上,,由橢圓的定義得,所以橢圓的離心率,故選B.【點睛】本題主要考查橢圓的定義及離心率,屬于難題.離心率的求解在圓錐曲線的考查中是一個重點也是難點,一般求離心率有以下幾種情況:①直接求出,從而求出;②構造的齊次式,求出;③采用離心率的定義以及圓錐曲線的定義來求解.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】
根據是等腰直角三角形,且為中點可得,再由雙曲線的性質可得,解出即得.【詳解】由題,設點,由,解得,即線段,為直角三角形,,且,又為雙曲線右焦點,過點,且軸,,可得,,整理得:,即,又,.故答案為:【點睛】本題考查雙曲線的簡單性質,是??碱}型.14、1【解析】
由得時,,兩式作差,可求得數列的通項公式,進一步求出數列的和.【詳解】解:數列的前項和為,,且滿足,①當時,,②①-②得:,整理得:(常數),故數列是以為首項,2為公比的等比數列,所以(首項不符合通項),故,所以:,故答案為:1.【點睛】本題主要考查數列的通項公式的求法及應用,數列的前項和的公式,屬于基礎題.15、【解析】由分層抽樣的知識可得,即,所以高三被抽取的人數為,應填答案.16、0.22.【解析】
正態(tài)曲線關于x=μ對稱,根據對稱性以及概率和為1求解即可?!驹斀狻俊军c睛】本題考查正態(tài)分布曲線的特點及曲線所表示的意義,是一個基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)的增區(qū)間為,減區(qū)間為;(2).【解析】
(1)求出函數的導數,由于參數的范圍對導數的符號有影響,對參數分類,再研究函數的單調區(qū)間;(2)由(1)的結論,求出的表達式,由于恒成立,故求出的最大值,即得實數的取值范圍的左端點.【詳解】解:(1)解:,當時,,解得的增區(qū)間為,解得的減區(qū)間為.(2)解:若,由得,由得,所以函數的減區(qū)間為,增區(qū)間為;,因為,所以,,令,則恒成立,由于,當時,,故函數在上是減函數,所以成立;當時,若則,故函數在上是增函數,即對時,,與題意不符;綜上,為所求.【點睛】本題考查導數在最大值與最小值問題中的應用,求解本題關鍵是根據導數研究出函數的單調性,由最值的定義得出函數的最值,本題中第一小題是求出函數的單調區(qū)間,第二小題是一個求函數的最值的問題,此類題運算量較大,轉化靈活,解題時極易因為變形與運算出錯,故做題時要認真仔細.18、(1)不能;(2)①;②分布列見解析,.【解析】
(1)根據題目所給的數據可求2×2列聯(lián)表即可;計算K的觀測值K2,對照題目中的表格,得出統(tǒng)計結論.(2)由相互獨立事件的概率可得男“環(huán)保達人”又有女“環(huán)保達人”的概率:P=1﹣()3﹣()3,解出X的分布列及數學期望E(X)即可;【詳解】(1)由圖中表格可得列聯(lián)表如下:非“環(huán)保關注者”是“環(huán)保關注者”合計男104555女153045合計2575100將列聯(lián)表中的數據代入公式計算得K”的觀測值,所以在犯錯誤的概率不超過0.05的前提下,不能認為是否為“環(huán)保關注者”與性別有關.(2)視頻率為概率,用戶為男“環(huán)保達人”的概率為.為女“環(huán)保達人”的概率為,①抽取的3名用戶中既有男“環(huán)保達人”又有女“環(huán)保達人”的概率為;②的取值為10,20,30,40.,,,,所以的分布列為10203040.【點睛】本題考查了獨立性檢驗的應用問題,考查了概率分布列和期望,計算能力的應用問題,是中檔題目.19、(1)(2)4【解析】
(1)將點P橫坐標代入拋物線中求得點P的坐標,利用點P到準線的距離d和勾股定理列方程求出p的值即可;(2)設A、B點坐標以及直線AB的方程,代入拋物線方程,利用根與系數的關系,以及垂直關系,得出關系式,計算的值即可.【詳解】(1)將點P橫坐標代入中,求得,∴P(2,),,點P到準線的距離為,∴,∴,解得,∴,∴拋物線C的方程為:;(2)拋物線的焦點為F(0,1),準線方程為,;設,直線AB的方程為,代入拋物線方程可得,∴,…①由,可得,又,,∴,∴,即,∴,…②把①代入②得,,則.【點睛】本題考查直線與拋物線的位置關系,以及拋物線與圓的方程應用問題,考查轉化思想以及計算能力,是中檔題.20、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)根據點差法,即可求得直線的斜率,則方程即可求得;(Ⅱ)設出直線方程,聯(lián)立橢圓方程,利用韋達定理,根據,即可求得參數的值.【詳解】(1)設,,則兩式相減,可得.(*)因為線段
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 云計算軟件架構-深度研究
- 農業(yè)生物安全-深度研究
- 基于歷史數據的負荷預測方法-深度研究
- 智能棚膜自清潔技術-深度研究
- 二零二五年度金融理財產品銷售合同性質與投資風險提示3篇
- 2025版售樓合同臺賬編制與管理規(guī)范范本9篇
- 2025年度廠房建設項目進度調整與合同變更合同范本4篇
- 2025年常州信息職業(yè)技術學院高職單招高職單招英語2016-2024歷年頻考點試題含答案解析
- 基于腸道菌群和代謝組學探討黃芩清熱除痹膠囊改善類風濕關節(jié)炎的作用機制
- Se(Ⅵ)對豬糞好氧堆肥溫室氣體釋放和有機物轉化的影響研究
- 餐廚垃圾收運安全操作規(guī)范
- 皮膚內科過敏反應病例分析
- 電影《獅子王》的視聽語言解析
- 妊娠合并低鉀血癥護理查房
- 煤礦反三違培訓課件
- 向流程設計要效率
- 2024年中國航空發(fā)動機集團招聘筆試參考題庫含答案解析
- 當代中外公司治理典型案例剖析(中科院研究生課件)
- 動力管道設計手冊-第2版
- 2022年重慶市中考物理試卷A卷(附答案)
- Python繪圖庫Turtle詳解(含豐富示例)
評論
0/150
提交評論