版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆山東省濟南市名校高考適應性考試數(shù)學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知f(x),g(x)都是偶函數(shù),且在[0,+∞)上單調(diào)遞增,設函數(shù)F(x)=f(x)+g(1-x)-|f(x)-g(1-x)|,若a>0,則()A.F(-a)≥F(a)且F(1+a)≥F(1-a)B.F(-a)≥F(a)且F(1+a)≤F(1-a)C.F(-a)≤F(a)且F(1+a)≥F(1-a)D.F(-a)≤F(a)且F(1+a)≤F(1-a)2.執(zhí)行如圖所示的程序框圖,輸出的結果為()A. B. C. D.3.在等腰直角三角形中,,為的中點,將它沿翻折,使點與點間的距離為,此時四面體的外接球的表面積為().A. B. C. D.4.某高中高三(1)班為了沖刺高考,營造良好的學習氛圍,向班內(nèi)同學征集書法作品貼在班內(nèi)墻壁上,小王,小董,小李各寫了一幅書法作品,分別是:“入班即靜”,“天道酬勤”,“細節(jié)決定成敗”,為了弄清“天道酬勤”這一作品是誰寫的,班主任對三人進行了問話,得到回復如下:小王說:“入班即靜”是我寫的;小董說:“天道酬勤”不是小王寫的,就是我寫的;小李說:“細節(jié)決定成敗”不是我寫的.若三人的說法有且僅有一人是正確的,則“入班即靜”的書寫者是()A.小王或小李 B.小王 C.小董 D.小李5.設雙曲線(a>0,b>0)的右焦點為F,右頂點為A,過F作AF的垂線與雙曲線交于B,C兩點,過B,C分別作AC,AB的垂線交于點D.若D到直線BC的距離小于,則該雙曲線的漸近線斜率的取值范圍是()A.B.C.D.6.已知數(shù)列的通項公式為,將這個數(shù)列中的項擺放成如圖所示的數(shù)陣.記為數(shù)陣從左至右的列,從上到下的行共個數(shù)的和,則數(shù)列的前2020項和為()A. B. C. D.7.已知為拋物線的焦點,點在上,若直線與的另一個交點為,則()A. B. C. D.8.已知三棱柱的所有棱長均相等,側(cè)棱平面,過作平面與平行,設平面與平面的交線為,記直線與直線所成銳角分別為,則這三個角的大小關系為()A. B.C. D.9.框圖與程序是解決數(shù)學問題的重要手段,實際生活中的一些問題在抽象為數(shù)學模型之后,可以制作框圖,編寫程序,得到解決,例如,為了計算一組數(shù)據(jù)的方差,設計了如圖所示的程序框圖,其中輸入,,,,,,,則圖中空白框中應填入()A., B. C., D.,10.過拋物線()的焦點且傾斜角為的直線交拋物線于兩點.,且在第一象限,則()A. B. C. D.11.雙曲線的左右焦點為,一條漸近線方程為,過點且與垂直的直線分別交雙曲線的左支及右支于,滿足,則該雙曲線的離心率為()A. B.3 C. D.212.秦九韶是我國南寧時期的數(shù)學家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進的算法.如圖所示的程序框圖給出了利用秦九韶算法求某多項式值的一個實例.若輸入、的值分別為、,則輸出的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,若向量與向量平行,則實數(shù)___________.14.甲,乙兩隊參加關于“一帶一路”知識競賽,甲隊有編號為1,2,3的三名運動員,乙隊有編號為1,2,3,4的四名運動員,若兩隊各出一名隊員進行比賽,則出場的兩名運動員編號相同的概率為______.15.為激發(fā)學生團結協(xié)作,敢于拼搏,不言放棄的精神,某校高三5個班進行班級間的拔河比賽.每兩班之間只比賽1場,目前(—)班已賽了4場,(二)班已賽了3場,(三)班已賽了2場,(四)班已賽了1場.則目前(五)班已經(jīng)參加比賽的場次為__________.16.在平面直角坐標系中,雙曲線的焦距為,若過右焦點且與軸垂直的直線與兩條漸近線圍成的三角形面積為,則雙曲線的離心率為____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在正四棱柱中,已知,.(1)求異面直線與直線所成的角的大??;(2)求點到平面的距離.18.(12分)在世界讀書日期間,某地區(qū)調(diào)查組對居民閱讀情況進行了調(diào)查,獲得了一個容量為200的樣本,其中城鎮(zhèn)居民140人,農(nóng)村居民60人.在這些居民中,經(jīng)常閱讀的城鎮(zhèn)居民有100人,農(nóng)村居民有30人.(1)填寫下面列聯(lián)表,并判斷能否有99%的把握認為經(jīng)常閱讀與居民居住地有關?城鎮(zhèn)居民農(nóng)村居民合計經(jīng)常閱讀10030不經(jīng)常閱讀合計200(2)調(diào)查組從該樣本的城鎮(zhèn)居民中按分層抽樣抽取出7人,參加一次閱讀交流活動,若活動主辦方從這7位居民中隨機選取2人作交流發(fā)言,求被選中的2位居民都是經(jīng)常閱讀居民的概率.附:,其中.0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82819.(12分)已知橢圓的左、右頂點分別為、,上、下頂點分別為,,為其右焦點,,且該橢圓的離心率為;(Ⅰ)求橢圓的標準方程;(Ⅱ)過點作斜率為的直線交橢圓于軸上方的點,交直線于點,直線與橢圓的另一個交點為,直線與直線交于點.若,求取值范圍.20.(12分)已知,分別是橢圓:的左,右焦點,點在橢圓上,且拋物線的焦點是橢圓的一個焦點.(1)求,的值:(2)過點作不與軸重合的直線,設與圓相交于A,B兩點,且與橢圓相交于C,D兩點,當時,求△的面積.21.(12分)在中,角、、所對的邊分別為、、,角、、的度數(shù)成等差數(shù)列,.(1)若,求的值;(2)求的最大值.22.(10分)如圖1,與是處在同-個平面內(nèi)的兩個全等的直角三角形,,,連接是邊上一點,過作,交于點,沿將向上翻折,得到如圖2所示的六面體(1)求證:(2)設若平面底面,若平面與平面所成角的余弦值為,求的值;(3)若平面底面,求六面體的體積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】試題分析:由題意得,F(xiàn)(x)=2g(1-x),f(x)≥g(1-x)∴F(-a)=2g(1+a),f(a)=f(-a)≥g(1+a)2f(-a),f(a)=f(-a)<g(1+a),∵a>0,∴(a+1)2-(a-1)∴若f(a)>g(1+a):F(-a)=2g(1+a),F(xiàn)(a)=2g(1-a),∴F(-a)>F(a),若g(1-a)≤f(a)≤g(1+a):F(-a)=2f(-a)=2f(a),F(xiàn)(a)=2g(1-a),∴F(-a)≥F(a),若f(a)<g(1-a):F(-a)=2f(-a)=2f(a),F(xiàn)(a)=2f(a),∴F(-a)=F(a),綜上可知F(-a)≥F(a),同理可知F(1+a)≥F(1-a),故選A.考點:1.函數(shù)的性質(zhì);2.分類討論的數(shù)學思想.【思路點睛】本題在在解題過程中抓住偶函數(shù)的性質(zhì),避免了由于單調(diào)性不同導致1-a與1+a大小不明確的討論,從而使解題過程得以優(yōu)化,另外,不要忘記定義域,如果要研究奇函數(shù)或者偶函數(shù)的值域、最值、單調(diào)性等問題,通常先在原點一側(cè)的區(qū)間(對奇(偶)函數(shù)而言)或某一周期內(nèi)(對周期函數(shù)而言)考慮,然后推廣到整個定義域上.2、D【解析】
由程序框圖確定程序功能后可得出結論.【詳解】執(zhí)行該程序可得.故選:D.【點睛】本題考查程序框圖.解題可模擬程序運行,觀察變量值的變化,然后可得結論,也可以由程序框圖確定程序功能,然后求解.3、D【解析】
如圖,將四面體放到直三棱柱中,求四面體的外接球的半徑轉(zhuǎn)化為求三棱柱外接球的半徑,然后確定球心在上下底面外接圓圓心連線中點,這樣根據(jù)幾何關系,求外接球的半徑.【詳解】中,易知,翻折后,,,設外接圓的半徑為,,,如圖:易得平面,將四面體放到直三棱柱中,則球心在上下底面外接圓圓心連線中點,設幾何體外接球的半徑為,,四面體的外接球的表面積為.故選:D【點睛】本題考查幾何體的外接球的表面積,意在考查空間想象能力,和計算能力,屬于中檔題型,求幾何體的外接球的半徑時,一般可以用補形法,因正方體,長方體的外接球半徑容易求,可以將一些特殊的幾何體補形為正方體或長方體,比如三條側(cè)棱兩兩垂直的三棱錐,或是構造直角三角形法,確定球心的位置,構造關于外接球半徑的方程求解.4、D【解析】
根據(jù)題意,分別假設一個正確,推理出與假設不矛盾,即可得出結論.【詳解】解:由題意知,若只有小王的說法正確,則小王對應“入班即靜”,而否定小董說法后得出:小王對應“天道酬勤”,則矛盾;若只有小董的說法正確,則小董對應“天道酬勤”,否定小李的說法后得出:小李對應“細節(jié)決定成敗”,所以剩下小王對應“入班即靜”,但與小王的錯誤的說法矛盾;若小李的說法正確,則“細節(jié)決定成敗”不是小李的,則否定小董的說法得出:小王對應“天道酬勤”,所以得出“細節(jié)決定成敗”是小董的,剩下“入班即靜”是小李的,符合題意.所以“入班即靜”的書寫者是:小李.故選:D.【點睛】本題考查推理證明的實際應用.5、A【解析】
由題意,根據(jù)雙曲線的對稱性知在軸上,設,則由得:,因為到直線的距離小于,所以,即,所以雙曲線漸近線斜率,故選A.6、D【解析】
由題意,設每一行的和為,可得,繼而可求解,表示,裂項相消即可求解.【詳解】由題意,設每一行的和為故因此:故故選:D【點睛】本題考查了等差數(shù)列型數(shù)陣的求和,考查了學生綜合分析,轉(zhuǎn)化劃歸,數(shù)學運算的能力,屬于中檔題.7、C【解析】
求得點坐標,由此求得直線的方程,聯(lián)立直線的方程和拋物線的方程,求得點坐標,進而求得【詳解】拋物線焦點為,令,,解得,不妨設,則直線的方程為,由,解得,所以.故選:C【點睛】本小題主要考查拋物線的弦長的求法,屬于基礎題.8、B【解析】
利用圖形作出空間中兩直線所成的角,然后利用余弦定理求解即可.【詳解】如圖,,設為的中點,為的中點,由圖可知過且與平行的平面為平面,所以直線即為直線,由題易知,的補角,分別為,設三棱柱的棱長為2,在中,,;在中,,;在中,,,.故選:B【點睛】本題主要考查了空間中兩直線所成角的計算,考查了學生的作圖,用圖能力,體現(xiàn)了學生直觀想象的核心素養(yǎng).9、A【解析】
依題意問題是,然后按直到型驗證即可.【詳解】根據(jù)題意為了計算7個數(shù)的方差,即輸出的,觀察程序框圖可知,應填入,,故選:A.【點睛】本題考查算法與程序框圖,考查推理論證能力以及轉(zhuǎn)化與化歸思想,屬于基礎題.10、C【解析】
作,;,由題意,由二倍角公式即得解.【詳解】由題意,,準線:,作,;,設,故,,.故選:C【點睛】本題考查了拋物線的性質(zhì)綜合,考查了學生綜合分析,轉(zhuǎn)化劃歸,數(shù)學運算的能力,屬于中檔題.11、A【解析】
設,直線的方程為,聯(lián)立方程得到,,根據(jù)向量關系化簡到,得到離心率.【詳解】設,直線的方程為.聯(lián)立整理得,則.因為,所以為線段的中點,所以,,整理得,故該雙曲線的離心率.故選:.【點睛】本題考查了雙曲線的離心率,意在考查學生的計算能力和轉(zhuǎn)化能力.12、B【解析】
列出循環(huán)的每一步,由此可得出輸出的值.【詳解】由題意可得:輸入,,,;第一次循環(huán),,,,繼續(xù)循環(huán);第二次循環(huán),,,,繼續(xù)循環(huán);第三次循環(huán),,,,跳出循環(huán);輸出.故選:B.【點睛】本題考查根據(jù)算法框圖計算輸出值,一般要列舉出算法的每一步,考查計算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由題可得,因為向量與向量平行,所以,解得.14、【解析】
出場運動員編號相同的事件顯然有3種,計算出總的基本事件數(shù),由古典概型概率計算公式求得答案.【詳解】甲隊有編號為1,2,3的三名運動員,乙隊有編號為1,2,3,4的四名運動員,出場的兩名運動員編號相同的事件數(shù)為3,出現(xiàn)的基本事件總數(shù),則出場的兩名運動員編號相同的概率為.故答案為:【點睛】本題考查求古典概率的概率問題,屬于基礎題.15、2【解析】
根據(jù)比賽場次,分析,畫出圖象,計算結果.【詳解】畫圖所示,可知目前(五)班已經(jīng)賽了2場.故答案為:2【點睛】本題考查推理,計數(shù)原理的圖形表示,意在考查數(shù)形結合分析問題的能力,屬于基礎題型.16、【解析】
利用即可建立關于的方程.【詳解】設雙曲線右焦點為,過右焦點且與軸垂直的直線與兩條漸近線分別交于兩點,則,,由已知,,即,所以,離心率.故答案為:【點睛】本題考查求雙曲線的離心率,做此類題的關鍵是建立的方程或不等式,是一道容易題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)建立空間坐標系,通過求向量與向量的夾角,轉(zhuǎn)化為異面直線與直線所成的角的大?。唬?)先求出面的一個法向量,再用點到面的距離公式算出即可.【詳解】以為原點,所在直線分別為軸建系,設所以,,所以異面直線與直線所成的角的余弦值為,異面直線與直線所成的角的大小為.(2)因為,,設是面的一個法向量,所以有即,令,,故,又,所以點到平面的距離為.【點睛】本題主要考查向量法求異面直線所成角的大小和點到面的距離,意在考查學生的數(shù)學建模以及數(shù)學運算能力.18、(1)見解析,有99%的把握認為經(jīng)常閱讀與居民居住地有關.(2)【解析】
(1)根據(jù)題中數(shù)據(jù)得到列聯(lián)表,然后計算出,與臨界值表中的數(shù)據(jù)對照后可得結論;(2)由題意得概率為古典概型,根據(jù)古典概型概率公式計算可得所求.【詳解】(1)由題意可得:城鎮(zhèn)居民農(nóng)村居民合計經(jīng)常閱讀10030130不經(jīng)常閱讀403070合計14060200則,所以有99%的把握認為經(jīng)常閱讀與居民居住地有關.(2)在城鎮(zhèn)居民140人中,經(jīng)常閱讀的有100人,不經(jīng)常閱讀的有40人.采取分層抽樣抽取7人,則其中經(jīng)常閱讀的有5人,記為、、、、;不經(jīng)常閱讀的有2人,記為、.從這7人中隨機選取2人作交流發(fā)言,所有可能的情況為,,,,,,,,,,,,,,,,,,,,,共21種,被選中的位居民都是經(jīng)常閱讀居民的情況有種,所求概率為.【點睛】本題主要考查古典概型的概率計算,以及獨立性檢驗的應用,利用列舉法是解決本題的關鍵,考查學生的計算能力.對于古典概型,要求事件總數(shù)是可數(shù)的,滿足條件的事件個數(shù)可數(shù),使得滿足條件的事件個數(shù)除以總的事件個數(shù)即可,屬于中檔題.19、(Ⅰ);(Ⅱ),.【解析】
(Ⅰ)由題意可得,的坐標,結合橢圓離心率,及隱含條件列式求得,的值,則橢圓方程可求;(Ⅱ)設直線,求得的坐標,再設直線,求出點的坐標,寫出的方程,聯(lián)立與,可求出的坐標,由,可得關于的函數(shù)式,由單調(diào)性可得取值范圍.【詳解】(Ⅰ),,,,,由,得,又,,解得:,,.橢圓的標準方程為;(Ⅱ)設直線,則與直線的交點,又,設直線,聯(lián)立,消可得.解得,,聯(lián)立,得,,直線,聯(lián)立,解得,,,,,,,,函數(shù)在上單調(diào)遞增,,.【點睛】本題考查橢圓方程的求法,考查直線與橢圓位置關系的應用,考查運算求解能力,意在考查學生對這些知識的理解掌握水平和分析推理計算能力.20、(1);(2).【解析】
(1)由已知根據(jù)拋物線和橢圓的定義和性質(zhì),可求出,;(2)設直線方程為,聯(lián)立直線與圓的方程可以求出,再聯(lián)立直線和橢圓的方程化簡,由根與系數(shù)的關系得到結論,繼而求出面積.【詳解】(1)焦點為F(1,0),則F1(1,0),F(xiàn)2(1,0),,解得,=1,=1,(Ⅱ)由已知,可設直線方程為,,聯(lián)立得,易知△>0,則===因為,所以=1,解得聯(lián)立,得,△
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度個人消費分期借款合同規(guī)范4篇
- 二零二五年度金融科技創(chuàng)新項目合作協(xié)議6篇
- 二零二五年度銀政合作金融服務創(chuàng)新合同3篇
- 二零二五年度防火門窗品牌代理合作協(xié)議3篇
- 潮州2024年廣東潮州市科學技術局屬下事業(yè)單位招聘10人(第二輪)筆試歷年參考題庫附帶答案詳解
- 漯河2024年河南漯河市文學藝術界聯(lián)合會所屬事業(yè)單位人才引進筆試歷年參考題庫附帶答案詳解
- 2025版無子女離婚協(xié)議書編制技巧與簽訂后的執(zhí)行3篇
- 湖南2025年湖南農(nóng)業(yè)大學-岳麓山實驗室博士后招聘筆試歷年參考題庫附帶答案詳解
- 二零二五年度櫥柜安裝與廚房改造一體化服務合同4篇
- 溫州浙江溫州市醫(yī)療保險管理中心招聘編外人員4人筆試歷年參考題庫附帶答案詳解
- 高考滿分作文常見結構完全解讀
- 專題2-2十三種高考補充函數(shù)歸類(講練)
- 理光投影機pj k360功能介紹
- 六年級數(shù)學上冊100道口算題(全冊完整版)
- 八年級數(shù)學下冊《第十九章 一次函數(shù)》單元檢測卷帶答案-人教版
- 帕薩特B5維修手冊及帕薩特B5全車電路圖
- 系統(tǒng)解剖學考試重點筆記
- 小學五年級解方程應用題6
- 云南省地圖含市縣地圖矢量分層地圖行政區(qū)劃市縣概況ppt模板
- 年月江西省南昌市某綜合樓工程造價指標及
- 作物栽培學課件棉花
評論
0/150
提交評論