![上海市儲(chǔ)能中學(xué)2024年高三二診模擬考試數(shù)學(xué)試卷含解析_第1頁(yè)](http://file4.renrendoc.com/view12/M00/36/22/wKhkGWZCoNWARB-BAAIMBHkduTo287.jpg)
![上海市儲(chǔ)能中學(xué)2024年高三二診模擬考試數(shù)學(xué)試卷含解析_第2頁(yè)](http://file4.renrendoc.com/view12/M00/36/22/wKhkGWZCoNWARB-BAAIMBHkduTo2872.jpg)
![上海市儲(chǔ)能中學(xué)2024年高三二診模擬考試數(shù)學(xué)試卷含解析_第3頁(yè)](http://file4.renrendoc.com/view12/M00/36/22/wKhkGWZCoNWARB-BAAIMBHkduTo2873.jpg)
![上海市儲(chǔ)能中學(xué)2024年高三二診模擬考試數(shù)學(xué)試卷含解析_第4頁(yè)](http://file4.renrendoc.com/view12/M00/36/22/wKhkGWZCoNWARB-BAAIMBHkduTo2874.jpg)
![上海市儲(chǔ)能中學(xué)2024年高三二診模擬考試數(shù)學(xué)試卷含解析_第5頁(yè)](http://file4.renrendoc.com/view12/M00/36/22/wKhkGWZCoNWARB-BAAIMBHkduTo2875.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
上海市儲(chǔ)能中學(xué)2024年高三二診模擬考試數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.某四棱錐的三視圖如圖所示,記為此棱錐所有棱的長(zhǎng)度的集合,則().A.,且 B.,且C.,且 D.,且2.已知的展開式中的常數(shù)項(xiàng)為8,則實(shí)數(shù)()A.2 B.-2 C.-3 D.33.方程的實(shí)數(shù)根叫作函數(shù)的“新駐點(diǎn)”,如果函數(shù)的“新駐點(diǎn)”為,那么滿足()A. B. C. D.4.從拋物線上一點(diǎn)(點(diǎn)在軸上方)引拋物線準(zhǔn)線的垂線,垂足為,且,設(shè)拋物線的焦點(diǎn)為,則直線的斜率為()A. B. C. D.5.關(guān)于函數(shù)有下述四個(gè)結(jié)論:()①是偶函數(shù);②在區(qū)間上是單調(diào)遞增函數(shù);③在上的最大值為2;④在區(qū)間上有4個(gè)零點(diǎn).其中所有正確結(jié)論的編號(hào)是()A.①②④ B.①③ C.①④ D.②④6.若雙曲線的焦距為,則的一個(gè)焦點(diǎn)到一條漸近線的距離為()A. B. C. D.7.下列圖形中,不是三棱柱展開圖的是()A. B. C. D.8.已知函數(shù),則()A.2 B.3 C.4 D.59.已知函數(shù)是定義在上的偶函數(shù),當(dāng)時(shí),,則,,的大小關(guān)系為()A. B. C. D.10.已知定義在上的函數(shù)滿足,且當(dāng)時(shí),,則方程的最小實(shí)根的值為()A. B. C. D.11.已知函數(shù)的一條切線為,則的最小值為()A. B. C. D.12.設(shè),是雙曲線的左,右焦點(diǎn),是坐標(biāo)原點(diǎn),過(guò)點(diǎn)作的一條漸近線的垂線,垂足為.若,則的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.曲線在點(diǎn)處的切線方程為________.14.從4名男生和3名女生中選出4名去參加一項(xiàng)活動(dòng),要求男生中的甲和乙不能同時(shí)參加,女生中的丙和丁至少有一名參加,則不同的選法種數(shù)為______.(用數(shù)字作答)15.已知數(shù)列的各項(xiàng)均為正數(shù),記為數(shù)列的前項(xiàng)和,若,,則______.16.如圖是九位評(píng)委打出的分?jǐn)?shù)的莖葉統(tǒng)計(jì)圖,去掉一個(gè)最高分和一個(gè)最低分后,所剩數(shù)據(jù)的平均分為_______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在直角坐標(biāo)系x0y中,把曲線α為參數(shù))上每個(gè)點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍,縱坐標(biāo)不變,得到曲線以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程(1)寫出的普通方程和的直角坐標(biāo)方程;(2)設(shè)點(diǎn)M在上,點(diǎn)N在上,求|MN|的最小值以及此時(shí)M的直角坐標(biāo).18.(12分)已知函數(shù).(1)討論的零點(diǎn)個(gè)數(shù);(2)證明:當(dāng)時(shí),.19.(12分)已知函數(shù).(Ⅰ)求在點(diǎn)處的切線方程;(Ⅱ)求證:在上存在唯一的極大值;(Ⅲ)直接寫出函數(shù)在上的零點(diǎn)個(gè)數(shù).20.(12分)甲、乙兩班各派三名同學(xué)參加知識(shí)競(jìng)賽,每人回答一個(gè)問(wèn)題,答對(duì)得10分,答錯(cuò)得0分,假設(shè)甲班三名同學(xué)答對(duì)的概率都是,乙班三名同學(xué)答對(duì)的概率分別是,,,且這六名同學(xué)答題正確與否相互之間沒(méi)有影響.(1)記“甲、乙兩班總得分之和是60分”為事件,求事件發(fā)生的概率;(2)用表示甲班總得分,求隨機(jī)變量的概率分布和數(shù)學(xué)期望.21.(12分)設(shè)實(shí)數(shù)滿足.(1)若,求的取值范圍;(2)若,,求證:.22.(10分)設(shè)為實(shí)數(shù),在極坐標(biāo)系中,已知圓()與直線相切,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
首先把三視圖轉(zhuǎn)換為幾何體,根據(jù)三視圖的長(zhǎng)度,進(jìn)一步求出個(gè)各棱長(zhǎng).【詳解】根據(jù)幾何體的三視圖轉(zhuǎn)換為幾何體為:該幾何體為四棱錐體,如圖所示:所以:,,.故選:D..【點(diǎn)睛】本題考查三視圖和幾何體之間的轉(zhuǎn)換,主要考查運(yùn)算能力和轉(zhuǎn)換能力及思維能力,屬于基礎(chǔ)題.2、A【解析】
先求的展開式,再分類分析中用哪一項(xiàng)與相乘,將所有結(jié)果為常數(shù)的相加,即為展開式的常數(shù)項(xiàng),從而求出的值.【詳解】展開式的通項(xiàng)為,當(dāng)取2時(shí),常數(shù)項(xiàng)為,當(dāng)取時(shí),常數(shù)項(xiàng)為由題知,則.故選:A.【點(diǎn)睛】本題考查了兩個(gè)二項(xiàng)式乘積的展開式中的系數(shù)問(wèn)題,其中對(duì)所取的項(xiàng)要進(jìn)行分類討論,屬于基礎(chǔ)題.3、D【解析】
由題設(shè)中所給的定義,方程的實(shí)數(shù)根叫做函數(shù)的“新駐點(diǎn)”,根據(jù)零點(diǎn)存在定理即可求出的大致范圍【詳解】解:由題意方程的實(shí)數(shù)根叫做函數(shù)的“新駐點(diǎn)”,對(duì)于函數(shù),由于,,設(shè),該函數(shù)在為增函數(shù),,,在上有零點(diǎn),故函數(shù)的“新駐點(diǎn)”為,那么故選:.【點(diǎn)睛】本題是一個(gè)新定義的題,理解定義,分別建立方程解出存在范圍是解題的關(guān)鍵,本題考查了推理判斷的能力,屬于基礎(chǔ)題..4、A【解析】
根據(jù)拋物線的性質(zhì)求出點(diǎn)坐標(biāo)和焦點(diǎn)坐標(biāo),進(jìn)而求出點(diǎn)的坐標(biāo),代入斜率公式即可求解.【詳解】設(shè)點(diǎn)的坐標(biāo)為,由題意知,焦點(diǎn),準(zhǔn)線方程,所以,解得,把點(diǎn)代入拋物線方程可得,,因?yàn)?,所以,所以點(diǎn)坐標(biāo)為,代入斜率公式可得,.故選:A【點(diǎn)睛】本題考查拋物線的性質(zhì),考查運(yùn)算求解能力;屬于基礎(chǔ)題.5、C【解析】
根據(jù)函數(shù)的奇偶性、單調(diào)性、最值和零點(diǎn)對(duì)四個(gè)結(jié)論逐一分析,由此得出正確結(jié)論的編號(hào).【詳解】的定義域?yàn)?由于,所以為偶函數(shù),故①正確.由于,,所以在區(qū)間上不是單調(diào)遞增函數(shù),所以②錯(cuò)誤.當(dāng)時(shí),,且存在,使.所以當(dāng)時(shí),;由于為偶函數(shù),所以時(shí),所以的最大值為,所以③錯(cuò)誤.依題意,,當(dāng)時(shí),,所以令,解得,令,解得.所以在區(qū)間,有兩個(gè)零點(diǎn).由于為偶函數(shù),所以在區(qū)間有兩個(gè)零點(diǎn).故在區(qū)間上有4個(gè)零點(diǎn).所以④正確.綜上所述,正確的結(jié)論序號(hào)為①④.故選:C【點(diǎn)睛】本小題主要考查三角函數(shù)的奇偶性、單調(diào)性、最值和零點(diǎn),考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.6、B【解析】
根據(jù)焦距即可求得參數(shù),再根據(jù)點(diǎn)到直線的距離公式即可求得結(jié)果.【詳解】因?yàn)殡p曲線的焦距為,故可得,解得,不妨??;又焦點(diǎn),其中一條漸近線為,由點(diǎn)到直線的距離公式即可求的.故選:B.【點(diǎn)睛】本題考查由雙曲線的焦距求方程,以及雙曲線的幾何性質(zhì),屬綜合基礎(chǔ)題.7、C【解析】
根據(jù)三棱柱的展開圖的可能情況選出選項(xiàng).【詳解】由圖可知,ABD選項(xiàng)可以圍成三棱柱,C選項(xiàng)不是三棱柱展開圖.故選:C【點(diǎn)睛】本小題主要考查三棱柱展開圖的判斷,屬于基礎(chǔ)題.8、A【解析】
根據(jù)分段函數(shù)直接計(jì)算得到答案.【詳解】因?yàn)樗?故選:.【點(diǎn)睛】本題考查了分段函數(shù)計(jì)算,意在考查學(xué)生的計(jì)算能力.9、C【解析】
根據(jù)函數(shù)的奇偶性得,再比較的大小,根據(jù)函數(shù)的單調(diào)性可得選項(xiàng).【詳解】依題意得,,當(dāng)時(shí),,因?yàn)?,所以在上單調(diào)遞增,又在上單調(diào)遞增,所以在上單調(diào)遞增,,即,故選:C.【點(diǎn)睛】本題考查函數(shù)的奇偶性的應(yīng)用、冪、指、對(duì)的大小比較,以及根據(jù)函數(shù)的單調(diào)性比較大小,屬于中檔題.10、C【解析】
先確定解析式求出的函數(shù)值,然后判斷出方程的最小實(shí)根的范圍結(jié)合此時(shí)的,通過(guò)計(jì)算即可得到答案.【詳解】當(dāng)時(shí),,所以,故當(dāng)時(shí),,所以,而,所以,又當(dāng)時(shí),的極大值為1,所以當(dāng)時(shí),的極大值為,設(shè)方程的最小實(shí)根為,,則,即,此時(shí)令,得,所以最小實(shí)根為411.故選:C.【點(diǎn)睛】本題考查函數(shù)與方程的根的最小值問(wèn)題,涉及函數(shù)極大值、函數(shù)解析式的求法等知識(shí),本題有一定的難度及高度,是一道有較好區(qū)分度的壓軸選這題.11、A【解析】
求導(dǎo)得到,根據(jù)切線方程得到,故,設(shè),求導(dǎo)得到函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,故,計(jì)算得到答案.【詳解】,則,取,,故,.故,故,.設(shè),,取,解得.故函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,故.故選:.【點(diǎn)睛】本題考查函數(shù)的切線問(wèn)題,利用導(dǎo)數(shù)求最值,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.12、B【解析】
設(shè)過(guò)點(diǎn)作的垂線,其方程為,聯(lián)立方程,求得,,即,由,列出相應(yīng)方程,求出離心率.【詳解】解:不妨設(shè)過(guò)點(diǎn)作的垂線,其方程為,由解得,,即,由,所以有,化簡(jiǎn)得,所以離心率.故選:B.【點(diǎn)睛】本題主要考查雙曲線的概念、直線與直線的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解、推理論證能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
求導(dǎo),得到和,利用點(diǎn)斜式即可求得結(jié)果.【詳解】由于,,所以,由點(diǎn)斜式可得切線方程為.故答案為:.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)的幾何意義求切線方程,屬基礎(chǔ)題.14、1【解析】
由排列組合及分類討論思想分別討論:①設(shè)甲參加,乙不參加,②設(shè)乙參加,甲不參加,③設(shè)甲,乙都不參加,可得不同的選法種數(shù)為9+9+5=1,得解.【詳解】①設(shè)甲參加,乙不參加,由女生中的丙和丁至少有一名參加,可得不同的選法種數(shù)為9,②設(shè)乙參加,甲不參加,由女生中的丙和丁至少有一名參加,可得不同的選法種數(shù)為9,③設(shè)甲,乙都不參加,由女生中的丙和丁至少有一名參加,可得不同的選法種數(shù)為5,綜合①②③得:不同的選法種數(shù)為9+9+5=1,故答案為:1.【點(diǎn)睛】本題考查了排列組合及分類討論思想,準(zhǔn)確分類及計(jì)算是關(guān)鍵,屬中檔題.15、63【解析】
對(duì)進(jìn)行化簡(jiǎn),可得,再根據(jù)等比數(shù)列前項(xiàng)和公式進(jìn)行求解即可【詳解】由數(shù)列為首項(xiàng)為,公比的等比數(shù)列,所以63【點(diǎn)睛】本題考查等比數(shù)列基本量的求法,當(dāng)處理復(fù)雜因式時(shí),常用基本方法為:因式分解,約分。但解題本質(zhì)還是圍繞等差和等比的基本性質(zhì)16、1【解析】
寫出莖葉圖對(duì)應(yīng)的所有的數(shù),去掉最高分,最低分,再求平均分.【詳解】解:所有的數(shù)為:77,78,82,84,84,86,88,93,94,共9個(gè)數(shù),去掉最高分,最低分,剩下78,82,84,84,86,88,93,共7個(gè)數(shù),平均分為,故答案為1.【點(diǎn)睛】本題考查莖葉圖及平均數(shù)的計(jì)算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)的普通方程為,的直角坐標(biāo)方程為.(2)最小值為,此時(shí)【解析】
(1)由的參數(shù)方程消去求得的普通方程,利用極坐標(biāo)和直角坐標(biāo)轉(zhuǎn)化公式,求得的直角坐標(biāo)方程.(2)設(shè)出點(diǎn)的坐標(biāo),利用點(diǎn)到直線的距離公式求得最小值的表達(dá)式,結(jié)合三角函數(shù)的指數(shù)求得的最小值以及此時(shí)點(diǎn)的坐標(biāo).【詳解】(1)由題意知的參數(shù)方程為(為參數(shù))所以的普通方程為.由得,所以的直角坐標(biāo)方程為.(2)由題意,可設(shè)點(diǎn)的直角坐標(biāo)為,因?yàn)槭侵本€,所以的最小值即為到的距離,因?yàn)椋?dāng)且僅當(dāng)時(shí),取得最小值為,此時(shí)的直角坐標(biāo)為即.【點(diǎn)睛】本小題主要考查參數(shù)方程化為普通方程,考查極坐標(biāo)方程化為直角坐標(biāo)方程,考查利用曲線參數(shù)方程求解點(diǎn)到直線距離的最小值問(wèn)題,屬于中檔題.18、(1)見(jiàn)解析(2)見(jiàn)解析【解析】
(1)求出,分別以當(dāng),,時(shí),結(jié)合函數(shù)的單調(diào)性和最值判斷零點(diǎn)的個(gè)數(shù).(2)令,結(jié)合導(dǎo)數(shù)求出;同理可求出滿足,從而可得,進(jìn)而證明.【詳解】解析:(1),,當(dāng)時(shí),,單調(diào)遞減,,,此時(shí)有1個(gè)零點(diǎn);當(dāng)時(shí),無(wú)零點(diǎn);當(dāng)時(shí),由得,由得,∴在單調(diào)遞減,在單調(diào)遞增,∴在處取得最小值,若,則,此時(shí)沒(méi)有零點(diǎn);若,則,此時(shí)有1個(gè)零點(diǎn);若,則,,求導(dǎo)易得,此時(shí)在,上各有1個(gè)零點(diǎn).綜上可得時(shí),沒(méi)有零點(diǎn),或時(shí),有1個(gè)零點(diǎn),時(shí),有2個(gè)零點(diǎn).(2)令,則,當(dāng)時(shí),;當(dāng)時(shí),,∴.令,則,當(dāng)時(shí),,當(dāng)時(shí),,∴,∴,,∴,即.【點(diǎn)睛】本題考查了導(dǎo)數(shù)判斷函數(shù)零點(diǎn)問(wèn)題,考查了運(yùn)用導(dǎo)數(shù)證明不等式問(wèn)題,考查了分類的數(shù)學(xué)思想.本題的難點(diǎn)在于第二問(wèn)不等式的證明中,合理設(shè)出函數(shù),通過(guò)比較最值證明.19、(Ⅰ);(Ⅱ)證明見(jiàn)解析;(Ⅲ)函數(shù)在有3個(gè)零點(diǎn).【解析】
(Ⅰ)求出導(dǎo)數(shù),寫出切線方程;(Ⅱ)二次求導(dǎo),判斷單調(diào)遞減,結(jié)合零點(diǎn)存在性定理,判斷即可;(Ⅲ),數(shù)形結(jié)合得出結(jié)論.【詳解】解:(Ⅰ),,,故在點(diǎn),處的切線方程為,即;(Ⅱ)證明:,,,故在遞減,又,,由零點(diǎn)存在性定理,存在唯一一個(gè)零點(diǎn),,當(dāng)時(shí),遞增;當(dāng)時(shí),遞減,故在只有唯一的一個(gè)極大值;(Ⅲ)函數(shù)在有3個(gè)零點(diǎn).【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)求切線方程,考查零點(diǎn)存在性定理的應(yīng)用,關(guān)鍵是能夠通過(guò)導(dǎo)函數(shù)的單調(diào)性和零點(diǎn)存在定理確定導(dǎo)函數(shù)的零點(diǎn)個(gè)數(shù),進(jìn)而確定函數(shù)的單調(diào)性,屬于難題.20、(1)(2)分布列見(jiàn)解析,期望為20【解析】
利用相互獨(dú)立事件概率公式求解即可;由題意知,隨機(jī)變量可能的取值為0,10,20,30,分別求出對(duì)應(yīng)的概率,列出分布列并代入數(shù)學(xué)期望公式求解即可.【詳解】(1)由相互獨(dú)立事件概率公式可得,(2)由題意知,隨機(jī)變量可能的取值為0,10,20,30.,,,,所以,的概率分布列為0102030所以數(shù)學(xué)期望.【點(diǎn)睛】本題考查相互獨(dú)立事件概率公式和離散型隨機(jī)變量的分布列及其數(shù)學(xué)期望;考查運(yùn)算求解能力;確定隨機(jī)變量可能的取值,求出對(duì)應(yīng)的概率是求解本題的關(guān)鍵;屬于中檔題、常考題型.21、(1)(2)證明見(jiàn)解析【解析】
(1)依題意可得,考慮到,則有再分類討論可得;(2)要證明,即證,即
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年地下空間緊急避難所行業(yè)深度調(diào)研及發(fā)展戰(zhàn)略咨詢報(bào)告
- 2025-2030年新能源汽車充電站布局行業(yè)跨境出海戰(zhàn)略研究報(bào)告
- 2025-2030年地質(zhì)編錄數(shù)字化平臺(tái)行業(yè)跨境出海戰(zhàn)略研究報(bào)告
- 2025-2030年戶外棒球體驗(yàn)行業(yè)跨境出海戰(zhàn)略研究報(bào)告
- 2025-2030年古代城墻建筑套件行業(yè)跨境出海戰(zhàn)略研究報(bào)告
- 2025-2030年搬運(yùn)機(jī)器人能源管理系統(tǒng)企業(yè)制定與實(shí)施新質(zhì)生產(chǎn)力戰(zhàn)略研究報(bào)告
- 初中教師家庭教育指導(dǎo)能力評(píng)價(jià)指標(biāo)體系研究
- 含氮苯稠雜環(huán)配合物的設(shè)計(jì)合成及其應(yīng)用研究
- 換衣行人重識(shí)別技術(shù)研究
- 渤海西部沉積孢粉記錄及其對(duì)中全新世以來(lái)黃河匯區(qū)系統(tǒng)演化的響應(yīng)
- 2021年《民法典擔(dān)保制度司法解釋》適用解讀之擔(dān)保解釋的歷程
- 第02講 導(dǎo)數(shù)與函數(shù)的單調(diào)性(學(xué)生版)-2025版高中數(shù)學(xué)一輪復(fù)習(xí)考點(diǎn)幫
- 部編版小學(xué)語(yǔ)文二年級(jí)下冊(cè)電子課文《小馬過(guò)河》
- 《醫(yī)療機(jī)構(gòu)工作人員廉潔從業(yè)九項(xiàng)準(zhǔn)則》專題解讀
- 愛(ài)車講堂 課件
- 成立商會(huì)的可行性報(bào)告5則范文
- 湖南財(cái)政經(jīng)濟(jì)學(xué)院《常微分方程》2023-2024學(xué)年第一學(xué)期期末試卷
- 游戲賬號(hào)借用合同模板
- 2022年中考英語(yǔ)語(yǔ)法-專題練習(xí)-名詞(含答案)
- 2011年公務(wù)員國(guó)考《申論》真題卷及答案(地市級(jí))
- 《籃球體前變向運(yùn)球技術(shù)》教案(共三篇)
評(píng)論
0/150
提交評(píng)論