2024屆山西省運城市鹽湖區(qū)高三第一次模擬考試數(shù)學試卷含解析_第1頁
2024屆山西省運城市鹽湖區(qū)高三第一次模擬考試數(shù)學試卷含解析_第2頁
2024屆山西省運城市鹽湖區(qū)高三第一次模擬考試數(shù)學試卷含解析_第3頁
2024屆山西省運城市鹽湖區(qū)高三第一次模擬考試數(shù)學試卷含解析_第4頁
2024屆山西省運城市鹽湖區(qū)高三第一次模擬考試數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆山西省運城市鹽湖區(qū)高三第一次模擬考試數(shù)學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設是虛數(shù)單位,則“復數(shù)為純虛數(shù)”是“”的()A.充要條件 B.必要不充分條件C.既不充分也不必要條件 D.充分不必要條件2.函數(shù)圖象的大致形狀是()A. B.C. D.3.直線與圓的位置關系是()A.相交 B.相切 C.相離 D.相交或相切4.第七屆世界軍人運動會于2019年10月18日至27日在中國武漢舉行,中國隊以133金64銀42銅位居金牌榜和獎牌榜的首位.運動會期間有甲、乙等五名志愿者被分配到射擊、田徑、籃球、游泳四個運動場地提供服務,要求每個人都要被派出去提供服務,且每個場地都要有志愿者服務,則甲和乙恰好在同一組的概率是()A. B. C. D.5.一個幾何體的三視圖及尺寸如下圖所示,其中正視圖是直角三角形,側(cè)視圖是半圓,俯視圖是等腰三角形,該幾何體的表面積是()A.B.C.D.6.已知復數(shù)在復平面內(nèi)對應的點的坐標為,則下列結(jié)論正確的是()A. B.復數(shù)的共軛復數(shù)是C. D.7.命題“”的否定是()A. B.C. D.8.若sin(α+3π2A.-12 B.-139.如圖,在圓錐SO中,AB,CD為底面圓的兩條直徑,AB∩CD=O,且AB⊥CD,SO=OB=3,SE.,異面直線SC與OE所成角的正切值為()A. B. C. D.10.已知,則,不可能滿足的關系是()A. B. C. D.11.把函數(shù)圖象上各點的橫坐標伸長為原來的2倍,縱坐標不變,再將圖象向右平移個單位,那么所得圖象的一個對稱中心為()A. B. C. D.12.下列函數(shù)中,既是偶函數(shù)又在區(qū)間上單調(diào)遞增的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在四面體中,與都是邊長為2的等邊三角形,且平面平面,則該四面體外接球的體積為_______.14.已知函數(shù),(其中e為自然對數(shù)的底數(shù)),若關于x的方程恰有5個相異的實根,則實數(shù)a的取值范圍為________.15.已知是等比數(shù)列,若,,且∥,則______.16.從2、3、5、7、11、13這六個質(zhì)數(shù)中任取兩個數(shù),這兩個數(shù)的和仍是質(zhì)數(shù)的概率是________(結(jié)果用最簡分數(shù)表示)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知,函數(shù).(Ⅰ)若在區(qū)間上單調(diào)遞增,求的值;(Ⅱ)若恒成立,求的最大值.(參考數(shù)據(jù):)18.(12分)如圖,為坐標原點,點為拋物線的焦點,且拋物線上點處的切線與圓相切于點(1)當直線的方程為時,求拋物線的方程;(2)當正數(shù)變化時,記分別為的面積,求的最小值.19.(12分)設為拋物線的焦點,,為拋物線上的兩個動點,為坐標原點.(Ⅰ)若點在線段上,求的最小值;(Ⅱ)當時,求點縱坐標的取值范圍.20.(12分)在直角坐標系中,直線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為,(為參數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(Ⅰ)求的極坐標方程和的直角坐標方程;(Ⅱ)設分別交于兩點(與原點不重合),求的最小值.21.(12分)已知圓M:及定點,點A是圓M上的動點,點B在上,點G在上,且滿足,,點G的軌跡為曲線C.(1)求曲線C的方程;(2)設斜率為k的動直線l與曲線C有且只有一個公共點,與直線和分別交于P、Q兩點.當時,求(O為坐標原點)面積的取值范圍.22.(10分)某公園有一塊邊長為3百米的正三角形空地,擬將它分割成面積相等的三個區(qū)域,用來種植三種花卉.方案是:先建造一條直道將分成面積之比為的兩部分(點D,E分別在邊,上);再取的中點M,建造直道(如圖).設,,(單位:百米).(1)分別求,關于x的函數(shù)關系式;(2)試確定點D的位置,使兩條直道的長度之和最小,并求出最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

結(jié)合純虛數(shù)的概念,可得,再結(jié)合充分條件和必要條件的定義即可判定選項.【詳解】若復數(shù)為純虛數(shù),則,所以,若,不妨設,此時復數(shù),不是純虛數(shù),所以“復數(shù)為純虛數(shù)”是“”的充分不必要條件.故選:D【點睛】本題考查充分條件和必要條件,考查了純虛數(shù)的概念,理解充分必要條件的邏輯關系是解題的關鍵,屬于基礎題.2、B【解析】

判斷函數(shù)的奇偶性,可排除A、C,再判斷函數(shù)在區(qū)間上函數(shù)值與的大小,即可得出答案.【詳解】解:因為,所以,所以函數(shù)是奇函數(shù),可排除A、C;又當,,可排除D;故選:B.【點睛】本題考查函數(shù)表達式判斷函數(shù)圖像,屬于中檔題.3、D【解析】

由幾何法求出圓心到直線的距離,再與半徑作比較,由此可得出結(jié)論.【詳解】解:由題意,圓的圓心為,半徑,∵圓心到直線的距離為,,,故選:D.【點睛】本題主要考查直線與圓的位置關系,屬于基礎題.4、A【解析】

根據(jù)題意,五人分成四組,先求出兩人組成一組的所有可能的分組種數(shù),再將甲乙組成一組的情況,即可求出概率.【詳解】五人分成四組,先選出兩人組成一組,剩下的人各自成一組,所有可能的分組共有種,甲和乙分在同一組,則其余三人各自成一組,只有一種分法,與場地無關,故甲和乙恰好在同一組的概率是.故選:A.【點睛】本題考查組合的應用和概率的計算,屬于基礎題.5、D【解析】

由三視圖可知該幾何體的直觀圖是軸截面在水平面上的半個圓錐,表面積為,故選D.6、D【解析】

首先求得,然后根據(jù)復數(shù)乘法運算、共軛復數(shù)、復數(shù)的模、復數(shù)除法運算對選項逐一分析,由此確定正確選項.【詳解】由題意知復數(shù),則,所以A選項不正確;復數(shù)的共軛復數(shù)是,所以B選項不正確;,所以C選項不正確;,所以D選項正確.故選:D【點睛】本小題考查復數(shù)的幾何意義,共軛復數(shù),復數(shù)的模,復數(shù)的乘法和除法運算等基礎知識;考查運算求解能力,推理論證能力,數(shù)形結(jié)合思想.7、D【解析】

根據(jù)全稱命題的否定是特稱命題,對命題進行改寫即可.【詳解】全稱命題的否定是特稱命題,所以命題“,”的否定是:,.故選D.【點睛】本題考查全稱命題的否定,難度容易.8、B【解析】

由三角函數(shù)的誘導公式和倍角公式化簡即可.【詳解】因為sinα+3π2=3故選B【點睛】本題考查了三角函數(shù)的誘導公式和倍角公式,靈活掌握公式是關鍵,屬于基礎題.9、D【解析】

可過點S作SF∥OE,交AB于點F,并連接CF,從而可得出∠CSF(或補角)為異面直線SC與OE所成的角,根據(jù)條件即可求出,這樣即可得出tan∠CSF的值.【詳解】如圖,過點S作SF∥OE,交AB于點F,連接CF,則∠CSF(或補角)即為異面直線SC與OE所成的角,∵,∴,又OB=3,∴,SO⊥OC,SO=OC=3,∴;SO⊥OF,SO=3,OF=1,∴;OC⊥OF,OC=3,OF=1,∴,∴等腰△SCF中,.故選:D.【點睛】本題考查了異面直線所成角的定義及求法,直角三角形的邊角的關系,平行線分線段成比例的定理,考查了計算能力,屬于基礎題.10、C【解析】

根據(jù)即可得出,,根據(jù),,即可判斷出結(jié)果.【詳解】∵;∴,;∴,,故正確;,故C錯誤;∵,故D正確故C.【點睛】本題主要考查指數(shù)式和對數(shù)式的互化,對數(shù)的運算,以及基本不等式:和不等式的應用,屬于中檔題11、D【解析】

試題分析:把函數(shù)圖象上各點的橫坐標伸長為原來的倍(縱坐標不變),可得的圖象;再將圖象向右平移個單位,可得的圖象,那么所得圖象的一個對稱中心為,故選D.考點:三角函數(shù)的圖象與性質(zhì).12、C【解析】

結(jié)合基本初等函數(shù)的奇偶性及單調(diào)性,結(jié)合各選項進行判斷即可.【詳解】A:為非奇非偶函數(shù),不符合題意;B:在上不單調(diào),不符合題意;C:為偶函數(shù),且在上單調(diào)遞增,符合題意;D:為非奇非偶函數(shù),不符合題意.故選:C.【點睛】本小題主要考查函數(shù)的單調(diào)性和奇偶性,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先確定球心的位置,結(jié)合勾股定理可求球的半徑,進而可得球的面積.【詳解】取的外心為,設為球心,連接,則平面,取的中點,連接,,過做于點,易知四邊形為矩形,連接,,設,.連接,則,,三點共線,易知,所以,.在和中,,,即,,所以,,得.所以.【點睛】本題主要考查幾何體的外接球問題,外接球的半徑的求解一般有兩個思路:一是確定球心位置,利用勾股定理求解半徑;二是利用熟悉的模型求解半徑,比如長方體外接球半徑是其對角線的一半.14、【解析】

作出圖象,求出方程的根,分類討論的正負,數(shù)形結(jié)合即可.【詳解】當時,令,解得,所以當時,,則單調(diào)遞增,當時,,則單調(diào)遞減,當時,單調(diào)遞減,且,作出函數(shù)的圖象如圖:(1)當時,方程整理得,只有2個根,不滿足條件;(2)若,則當時,方程整理得,則,,此時各有1解,故當時,方程整理得,有1解同時有2解,即需,,因為(2),故此時滿足題意;或有2解同時有1解,則需,由(1)可知不成立;或有3解同時有0解,根據(jù)圖象不存在此種情況,或有0解同時有3解,則,解得,故,(3)若,顯然當時,和均無解,當時,和無解,不符合題意.綜上:的范圍是,故答案為:,【點睛】本題主要考查了函數(shù)零點與函數(shù)圖象的關系,考查利用導數(shù)研究函數(shù)的單調(diào)性,意在考查學生對這些知識的理解掌握水平和分析推理能力,屬于中檔題.15、【解析】若,,且∥,則,由是等比數(shù)列,可知公比為..故答案為.16、【解析】

依據(jù)古典概型的計算公式,分別求“任取兩個數(shù)”和“任取兩個數(shù),和是質(zhì)數(shù)”的事件數(shù),計算即可?!驹斀狻俊叭稳蓚€數(shù)”的事件數(shù)為,“任取兩個數(shù),和是質(zhì)數(shù)”的事件有(2,3),(2,5),(2,11)共3個,所以任取兩個數(shù),這兩個數(shù)的和仍是質(zhì)數(shù)的概率是?!军c睛】本題主要考查古典概型的概率求法。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)3.【解析】

(Ⅰ)先求導,得,已知導函數(shù)單調(diào)遞增,又在區(qū)間上單調(diào)遞增,故,令,求得,討論得,而,故,進而得解;(Ⅱ)可通過必要性探路,當時,由知,又由于,則,當,,結(jié)合零點存在定理可判斷必存在使得,得,,化簡得,再由二次函數(shù)性質(zhì)即可求證;【詳解】(Ⅰ)的定義域為.易知單調(diào)遞增,由題意有.令,則.令得.所以當時,單調(diào)遞增;當時,單調(diào)遞減.所以,而又有,因此,所以.(Ⅱ)由知,又由于,則.下面證明符合條件.若.所以.易知單調(diào)遞增,而,,因此必存在使得,即.且當時,單調(diào)遞減;當時,,單調(diào)遞增;則.綜上,的最大值為3.【點睛】本題考查導數(shù)的計算,利用導數(shù)研究函數(shù)的增減性和最值,屬于中檔題18、(1)x2=4y.(2).【解析】試題解析:(Ⅰ)設點P(x0,),由x2=2py(p>0)得,y=,求導y′=,因為直線PQ的斜率為1,所以=1且x0--√2=0,解得p=2,所以拋物線C1的方程為x2=4y.(Ⅱ)因為點P處的切線方程為:y-=(x-x0),即2x0x-2py-x02=0,∴OQ的方程為y=-x根據(jù)切線與圓切,得d=r,即,化簡得x04=4x02+4p2,由方程組,解得Q(,),所以|PQ|=√1+k2|xP-xQ|=點F(0,)到切線PQ的距離是d=,所以S1==,S2=,而由x04=4x02+4p2知,4p2=x04-4x02>0,得|x0|>2,所以==+1≥2+1,當且僅當時取“=”號,即x02=4+2,此時,p=.所以的最小值為2+1.考點:求拋物線的方程,與拋物線有關的最值問題.19、(Ⅰ)(Ⅱ)【解析】

(1)由拋物線的性質(zhì),當軸時,最??;(2)設點,,分別代入拋物線方程和得到三個方程,消去,得到關于的一元二次方程,利用判別式即可求出的范圍.【詳解】解:(1)由拋物線的標準方程,,根據(jù)拋物線的性質(zhì),當軸時,最小,最小值為,即為4.(2)由題意,設點,,其中,.則,①,②因為,,,所以.③由①②③,得,由,且,得,解不等式,得點縱坐標的范圍為.【點睛】本題主要考查拋物線的方程和性質(zhì)和二次方程的解的問題,考查運算能力,此類問題能較好的考查考生的邏輯思維能力、運算求解能力、分析問題解決問題的能力等,易錯點是復雜式子的變形能力不足,導致錯解.20、(Ⅰ)直線的極坐標方程為,直線的極坐標方程為,的直角坐標方程為;(Ⅱ)2.【解析】

(Ⅰ)由定義可直接寫出直線的極坐標方程,對曲線同乘可得:,轉(zhuǎn)化成直角坐標為;(Ⅱ)分別聯(lián)立兩直線和曲線的方程,由得,由得,則,結(jié)合三角函數(shù)即可求解;【詳解】(Ⅰ)直線的極坐標方程為,直線的極坐標方程為由曲線的極坐標方程得,所以的直角坐標方程為.(Ⅱ)與的極坐標方程聯(lián)立得所以.與的極坐標方程聯(lián)立得所以.所以.所以當時,取最小值2.【點睛】本題考查參數(shù)方程與極坐標方程的互化,極坐標方程與直角坐標方程的互化,極坐標中的幾何意義,屬于中檔題21、(1);(2).【解析】

(1)根據(jù)題意得到GB是線段的中垂線,從而為定值,根據(jù)橢圓定義可知點G的軌跡是以M,N為焦點的橢圓,即可求出曲線C的方程;(2)聯(lián)立直線方程和橢圓方程,表示處的面積代入韋達定理化簡即可求范圍.【詳解】(1)為的中點,且是線段的中垂線,,又,∴點G的軌跡是以M,N為焦點的橢圓,設橢圓方

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論