版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
第二附屬中學(xué)2024屆中考五模數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.如圖,AB是定長線段,圓心O是AB的中點,AE、BF為切線,E、F為切點,滿足AE=BF,在上取動點G,國點G作切線交AE、BF的延長線于點D、C,當(dāng)點G運動時,設(shè)AD=y,BC=x,則y與x所滿足的函數(shù)關(guān)系式為()A.正比例函數(shù)y=kx(k為常數(shù),k≠0,x>0)B.一次函數(shù)y=kx+b(k,b為常數(shù),kb≠0,x>0)C.反比例函數(shù)y=(k為常數(shù),k≠0,x>0)D.二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),a≠0,x>0)2.如圖,邊長為1的小正方形構(gòu)成的網(wǎng)格中,半徑為1的⊙O的圓心O在格點上,則∠BED的正切值等于()A. B. C.2 D.3.下列實數(shù)中是無理數(shù)的是()A. B.π C. D.4.當(dāng)a>0時,下列關(guān)于冪的運算正確的是()A.a(chǎn)0=1 B.a(chǎn)﹣1=﹣a C.(﹣a)2=﹣a2 D.(a2)3=a55.某城市幾條道路的位置關(guān)系如圖所示,已知AB∥CD,AE與AB的夾角為48°,若CF與EF的長度相等,則∠C的度數(shù)為()A.48° B.40° C.30° D.24°6.下列運算正確的是()A.a(chǎn)2?a3=a6B.a(chǎn)3+a2=a5C.(a2)4=a8D.a(chǎn)3﹣a2=a7.拋物線的頂點坐標(biāo)是()A.(2,3) B.(-2,3) C.(2,-3) D.(-2,-3)8.下列各數(shù)中,最小的數(shù)是A. B. C.0 D.9.如果-a=-aA.a(chǎn)>0 B.a(chǎn)≥0 C.a(chǎn)≤0 D.a(chǎn)<010.下列計算正確的是()A. B.(﹣a2)3=a6 C. D.6a2×2a=12a3二、填空題(本大題共6個小題,每小題3分,共18分)11.某菜農(nóng)搭建了一個橫截面為拋物線的大棚,尺寸如圖,若菜農(nóng)身高為1.8m,他在不彎腰的情況下,在棚內(nèi)的橫向活動范圍是__m.12.如圖,在ABC中,AB=AC=6,∠BAC=90°,點D、E為BC邊上的兩點,分別沿AD、AE折疊,B、C兩點重合于點F,若DE=5,則AD的長為_____.13.科技改變生活,手機導(dǎo)航極大方便了人們的出行.如圖,小明一家自駕到古鎮(zhèn)C游玩,到達(dá)A地后,導(dǎo)航顯示車輛應(yīng)沿北偏西60°方向行駛6千米至B地,再沿北偏東45°方向行駛一段距離到達(dá)古鎮(zhèn)C.小明發(fā)現(xiàn)古鎮(zhèn)C恰好在A地的正北方向,則B、C兩地的距離是_____千米.14.如圖,在菱形ABCD中,點E、F在對角線BD上,BE=DF=BD,若四邊形AECF為正方形,則tan∠ABE=_____.15.若,,則的值為________.16.的相反數(shù)是_____,倒數(shù)是_____,絕對值是_____三、解答題(共8題,共72分)17.(8分)某公司銷售A,B兩種品牌的教學(xué)設(shè)備,這兩種教學(xué)設(shè)備的進(jìn)價和售價如表所示AB進(jìn)價(萬元/套)1.51.2售價(萬元/套)1.81.4該公司計劃購進(jìn)兩種教學(xué)設(shè)備若干套,共需66萬元,全部銷售后可獲毛利潤12萬元.(1)該公司計劃購進(jìn)A,B兩種品牌的教學(xué)設(shè)備各多少套?(2)通過市場調(diào)研,該公司決定在原計劃的基礎(chǔ)上,減少A種設(shè)備的購進(jìn)數(shù)量,增加B種設(shè)備的購進(jìn)數(shù)量,已知B種設(shè)備增加的數(shù)量是A種設(shè)備減少的數(shù)量的1.5倍.若用于購進(jìn)這兩種教學(xué)設(shè)備的總資金不超過68萬元,問A種設(shè)備購進(jìn)數(shù)量至多減少多少套?18.(8分)如圖所示是一幢住房的主視圖,已知:,房子前后坡度相等,米,米,設(shè)后房檐到地面的高度為米,前房檐到地面的高度米,求的值.19.(8分)某商場將每件進(jìn)價為80元的某種商品按每件100元出售,一天可售出100件.后來經(jīng)過市場調(diào)查,發(fā)現(xiàn)這種商品單價每降低1元,其銷量可增加10件.(1)若商場經(jīng)營該商品一天要獲利潤2160元,則每件商品應(yīng)降價多少元?(2)設(shè)后來該商品每件降價x元,商場一天可獲利潤y元.求出y與x之間的函數(shù)關(guān)系式,并求當(dāng)x取何值時,商場獲利潤最大?20.(8分)撫順某中學(xué)為了解八年級學(xué)生的體能狀況,從八年級學(xué)生中隨機抽取部分學(xué)生進(jìn)行體能測試,測試結(jié)果分為A,B,C,D四個等級.請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:(1)本次抽樣調(diào)查共抽取了多少名學(xué)生?(2)求測試結(jié)果為C等級的學(xué)生數(shù),并補全條形圖;(3)若該中學(xué)八年級共有700名學(xué)生,請你估計該中學(xué)八年級學(xué)生中體能測試結(jié)果為D等級的學(xué)生有多少名?(4)若從體能為A等級的2名男生2名女生中隨機的抽取2名學(xué)生,做為該校培養(yǎng)運動員的重點對象,請用列表法或畫樹狀圖的方法求所抽取的兩人恰好都是男生的概率.21.(8分)如圖,將矩形ABCD繞點A順時針旋轉(zhuǎn),得到矩形AB′C′D′,點C的對應(yīng)點C′恰好落在CB的延長線上,邊AB交邊C′D′于點E.(1)求證:BC=BC′;(2)若AB=2,BC=1,求AE的長.22.(10分)如圖,MN是一條東西方向的海岸線,在海岸線上的A處測得一海島在南偏西32°的方向上,向東走過780米后到達(dá)B處,測得海島在南偏西37°的方向,求小島到海岸線的距離.(參考數(shù)據(jù):tan37°=cot53°≈0.755,cot37°=tan53°≈1.327,tan32°=cot58°≈0.625,cot32°=tan58°≈1.1.)23.(12分)如圖,點A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x軸,∠ABC=135°,且AB=1.(1)填空:拋物線的頂點坐標(biāo)為(用含m的代數(shù)式表示);(2)求△ABC的面積(用含a的代數(shù)式表示);(3)若△ABC的面積為2,當(dāng)2m﹣5≤x≤2m﹣2時,y的最大值為2,求m的值.24.化簡求值:,其中x是不等式組的整數(shù)解.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
延長AD,BC交于點Q,連接OE,OF,OD,OC,OQ,由AE與BF為圓的切線,利用切線的性質(zhì)得到AE與EO垂直,BF與OF垂直,由AE=BF,OE=OF,利用HL得到直角三角形AOE與直角BOF全等,利用全等三角形的對應(yīng)角相等得到∠A=∠B,利用等角對等邊可得出三角形QAB為等腰三角形,由O為底邊AB的中點,利用三線合一得到QO垂直于AB,得到一對直角相等,再由∠FQO與∠OQB為公共角,利用兩對對應(yīng)角相等的兩三角形相似得到三角形FQO與三角形OQB相似,同理得到三角形EQO與三角形OAQ相似,由相似三角形的對應(yīng)角相等得到∠QOE=∠QOF=∠A=∠B,再由切線長定理得到OD與OC分別為∠EOG與∠FOG的平分線,得到∠DOC為∠EOF的一半,即∠DOC=∠A=∠B,又∠GCO=∠FCO,得到三角形DOC與三角形OBC相似,同理三角形DOC與三角形DAO相似,進(jìn)而確定出三角形OBC與三角形DAO相似,由相似得比例,將AD=x,BC=y代入,并將AO與OB換為AB的一半,可得出x與y的乘積為定值,即y與x成反比例函數(shù),即可得到正確的選項.【詳解】延長AD,BC交于點Q,連接OE,OF,OD,OC,OQ,∵AE,BF為圓O的切線,∴OE⊥AE,OF⊥FB,∴∠AEO=∠BFO=90°,在Rt△AEO和Rt△BFO中,∵,∴Rt△AEO≌Rt△BFO(HL),∴∠A=∠B,∴△QAB為等腰三角形,又∵O為AB的中點,即AO=BO,∴QO⊥AB,∴∠QOB=∠QFO=90°,又∵∠OQF=∠BQO,∴△QOF∽△QBO,∴∠B=∠QOF,同理可以得到∠A=∠QOE,∴∠QOF=∠QOE,根據(jù)切線長定理得:OD平分∠EOG,OC平分∠GOF,∴∠DOC=∠EOF=∠A=∠B,又∵∠GCO=∠FCO,∴△DOC∽△OBC,同理可以得到△DOC∽△DAO,∴△DAO∽△OBC,∴,∴AD?BC=AO?OB=AB2,即xy=AB2為定值,設(shè)k=AB2,得到y(tǒng)=,則y與x滿足的函數(shù)關(guān)系式為反比例函數(shù)y=(k為常數(shù),k≠0,x>0).故選C.【點睛】本題屬于圓的綜合題,涉及的知識有:相似三角形的判定與性質(zhì),切線長定理,直角三角形全等的判定與性質(zhì),反比例函數(shù)的性質(zhì),以及等腰三角形的性質(zhì),做此題是注意靈活運用所學(xué)知識.2、D【解析】
根據(jù)同弧或等弧所對的圓周角相等可知∠BED=∠BAD,再結(jié)合圖形根據(jù)正切的定義進(jìn)行求解即可得.【詳解】∵∠DAB=∠DEB,∴tan∠DEB=tan∠DAB=,故選D.【點睛】本題考查了圓周角定理(同弧或等弧所對的圓周角相等)和正切的概念,正確得出相等的角是解題關(guān)鍵.3、B【解析】
無理數(shù)就是無限不循環(huán)小數(shù).理解無理數(shù)的概念,一定要同時理解有理數(shù)的概念,有理數(shù)是整數(shù)與分?jǐn)?shù)的統(tǒng)稱.即有限小數(shù)和無限循環(huán)小數(shù)是有理數(shù),而無限不循環(huán)小數(shù)是無理數(shù).由此即可判定選擇項.【詳解】A、是分?jǐn)?shù),屬于有理數(shù);B、π是無理數(shù);C、=3,是整數(shù),屬于有理數(shù);D、-是分?jǐn)?shù),屬于有理數(shù);故選B.【點睛】此題主要考查了無理數(shù)的定義,其中初中范圍內(nèi)學(xué)習(xí)的無理數(shù)有:π,2π等;開方開不盡的數(shù);以及像0.1010010001…,等有這樣規(guī)律的數(shù).4、A【解析】
直接利用零指數(shù)冪的性質(zhì)以及負(fù)指數(shù)冪的性質(zhì)、冪的乘方運算法則分別化簡得出答案.【詳解】A選項:a0=1,正確;B選項:a﹣1=,故此選項錯誤;C選項:(﹣a)2=a2,故此選項錯誤;D選項:(a2)3=a6,故此選項錯誤;故選A.【點睛】考查了零指數(shù)冪的性質(zhì)以及負(fù)指數(shù)冪的性質(zhì)、冪的乘方運算,正確掌握相關(guān)運算法則是解題關(guān)鍵.5、D【解析】解:∵AB∥CD,∴∠1=∠BAE=48°.∵CF=EF,∴∠C=∠E.∵∠1=∠C+∠E,∴∠C=∠1=×48°=24°.故選D.點睛:本題考查了等腰三角形的性質(zhì),平行線的性質(zhì):兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補;兩直線平行,內(nèi)錯角相等.6、C【解析】
根據(jù)同底數(shù)冪的乘法法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加;合并同類項的法則:把同類項的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)不變;冪的乘方法則:底數(shù)不變,指數(shù)相乘進(jìn)行計算即可.【詳解】A、a2?a3=a5,故原題計算錯誤;B、a3和a2不是同類項,不能合并,故原題計算錯誤;C、(a2)4=a8,故原題計算正確;D、a3和a2不是同類項,不能合并,故原題計算錯誤;故選:C.【點睛】此題主要考查了冪的乘方、同底數(shù)冪的乘法,以及合并同類項,關(guān)鍵是掌握計算法則.7、A【解析】
已知解析式為頂點式,可直接根據(jù)頂點式的坐標(biāo)特點,求頂點坐標(biāo).【詳解】解:y=(x-2)2+3是拋物線的頂點式方程,根據(jù)頂點式的坐標(biāo)特點可知,頂點坐標(biāo)為(2,3).故選A.【點睛】此題主要考查了二次函數(shù)的性質(zhì),關(guān)鍵是熟記:頂點式y(tǒng)=a(x-h)2+k,頂點坐標(biāo)是(h,k),對稱軸是x=h.8、A【解析】
應(yīng)明確在數(shù)軸上,從左到右的順序,就是數(shù)從小到大的順序,據(jù)此解答.【詳解】解:因為在數(shù)軸上-3在其他數(shù)的左邊,所以-3最?。还蔬xA.【點睛】此題考負(fù)數(shù)的大小比較,應(yīng)理解數(shù)字大的負(fù)數(shù)反而?。?、C【解析】
根據(jù)絕對值的性質(zhì):一個正數(shù)的絕對值是它本身,一個負(fù)數(shù)的絕對值是它的相反數(shù),1的絕對值是1.若|-a|=-a,則可求得a的取值范圍.注意1的相反數(shù)是1.【詳解】因為|-a|≥1,所以-a≥1,那么a的取值范圍是a≤1.故選C.【點睛】絕對值規(guī)律總結(jié):一個正數(shù)的絕對值是它本身,一個負(fù)數(shù)的絕對值是它的相反數(shù),1的絕對值是1.10、D【解析】
根據(jù)平方根的運算法則和冪的運算法則進(jìn)行計算,選出正確答案.【詳解】,A選項錯誤;(﹣a2)3=-a6,B錯誤;,C錯誤;.6a2×2a=12a3,D正確;故選:D.【點睛】本題考查學(xué)生對平方根及冪運算的能力的考查,熟練掌握平方根運算和冪運算法則是解答本題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】
設(shè)拋物線的解析式為:y=ax2+b,由圖得知點(0,2.4),(1,0)在拋物線上,列方程組得到拋物線的解析式為:y=﹣x2+2.4,根據(jù)題意求出y=1.8時x的值,進(jìn)而求出答案;【詳解】設(shè)拋物線的解析式為:y=ax2+b,由圖得知:點(0,2.4),(1,0)在拋物線上,∴,解得:,∴拋物線的解析式為:y=﹣x2+2.4,∵菜農(nóng)的身高為1.8m,即y=1.8,則1.8=﹣x2+2.4,解得:x=(負(fù)值舍去)故他在不彎腰的情況下,橫向活動范圍是:1米,故答案為1.12、或【解析】
過點A作AG⊥BC,垂足為G,根據(jù)等腰直角三角形的性質(zhì)可得AG=BG=CG=6,設(shè)BD=x,則DF=BD=x,EF=7-x,然后利用勾股定理可得到關(guān)于x的方程,從而求得DG的長,繼而可求得AD的長.【詳解】如圖所示,過點A作AG⊥BC,垂足為G,∵AB=AC=6,∠BAC=90°,∴BC==12,∵AB=AC,AG⊥BC,∴AG=BG=CG=6,設(shè)BD=x,則EC=12-DE-BD=12-5-x=7-x,由翻折的性質(zhì)可知:∠DFA=∠B=∠C=∠AFE=45°,DB=DF,EF=FC,∴DF=x,EF=7-x,在Rt△DEF中,DE2=DF2+EF2,即25=x2+(7-x)2,解得:x=3或x=4,當(dāng)BD=3時,DG=3,AD=,當(dāng)BD=4時,DG=2,AD=,∴AD的長為或,故答案為:或.【點睛】本題考查了翻折的性質(zhì)、勾股定理的應(yīng)用、等腰直角三角形的性質(zhì),正確添加輔助線,靈活運用勾股定理是解題的關(guān)鍵.13、3【解析】
作BE⊥AC于E,根據(jù)正弦的定義求出BE,再根據(jù)正弦的定義計算即可.【詳解】解:作BE⊥AC于E,在Rt△ABE中,sin∠BAC=,∴BE=AB?sin∠BAC=,由題意得,∠C=45°,∴BC==(千米),故答案為3.【點睛】本題考查的是解直角三角形的應(yīng)用-方向角問題,掌握方向角的概念、熟記銳角三角函數(shù)的定義是解題的關(guān)鍵.14、【解析】
利用正方形對角線相等且互相平分,得出EO=AO=BE,進(jìn)而得出答案.【詳解】解:∵四邊形AECF為正方形,
∴EF與AC相等且互相平分,
∴∠AOB=90°,AO=EO=FO,
∵BE=DF=BD,
∴BE=EF=FD,
∴EO=AO=BE,
∴tan∠ABE==.
故答案為:【點睛】此題主要考查了正方形的性質(zhì)以及銳角三角函數(shù)關(guān)系,正確得出EO=AO=BE是解題關(guān)鍵.15、-.【解析】分析:已知第一個等式左邊利用平方差公式化簡,將a﹣b的值代入即可求出a+b的值.詳解:∵a2﹣b2=(a+b)(a﹣b)=,a﹣b=,∴a+b=.故答案為.點睛:本題考查了平方差公式,熟練掌握平方差公式是解答本題的關(guān)鍵.16、,【解析】∵只有符號不同的兩個數(shù)是互為相反數(shù),∴的相反數(shù)是;∵乘積為1的兩個數(shù)互為倒數(shù),∴的倒數(shù)是;∵負(fù)數(shù)得絕對值是它的相反數(shù),∴絕對值是故答案為(1).(2).(3).三、解答題(共8題,共72分)17、(1)該公司計劃購進(jìn)A種品牌的教學(xué)設(shè)備20套,購進(jìn)B種品牌的教學(xué)設(shè)備30套;(2)A種品牌的教學(xué)設(shè)備購進(jìn)數(shù)量至多減少1套.【解析】
(1)設(shè)該公司計劃購進(jìn)A種品牌的教學(xué)設(shè)備x套,購進(jìn)B種品牌的教學(xué)設(shè)備y套,根據(jù)花11萬元購進(jìn)兩種設(shè)備銷售后可獲得利潤12萬元,即可得出關(guān)于x、y的二元一次方程組,解之即可得出結(jié)論;(2)設(shè)A種品牌的教學(xué)設(shè)備購進(jìn)數(shù)量減少m套,則B種品牌的教學(xué)設(shè)備購進(jìn)數(shù)量增加1.5m套,根據(jù)總價=單價×數(shù)量結(jié)合用于購進(jìn)這兩種教學(xué)設(shè)備的總資金不超過18萬元,即可得出關(guān)于m的一元一次不等式,解之取其中最大的整數(shù)即可得出結(jié)論.【詳解】解:(1)設(shè)該公司計劃購進(jìn)A種品牌的教學(xué)設(shè)備x套,購進(jìn)B種品牌的教學(xué)設(shè)備y套,根據(jù)題意得:解得:.答:該公司計劃購進(jìn)A種品牌的教學(xué)設(shè)備20套,購進(jìn)B種品牌的教學(xué)設(shè)備30套.(2)設(shè)A種品牌的教學(xué)設(shè)備購進(jìn)數(shù)量減少m套,則B種品牌的教學(xué)設(shè)備購進(jìn)數(shù)量增加1.5m套,根據(jù)題意得:1.5(20﹣m)+1.2(30+1.5m)≤18,解得:m≤,∵m為整數(shù),∴m≤1.答:A種品牌的教學(xué)設(shè)備購進(jìn)數(shù)量至多減少1套.【點睛】本題考查了二元一次方程組的應(yīng)用以及一元一次不等式的應(yīng)用,解題的關(guān)鍵是:(1)找準(zhǔn)等量關(guān)系,正確列出二元一次方程組;(2)根據(jù)各數(shù)量間的關(guān)系,正確列出一元一次不等式.18、【解析】
過A作一條水平線,分別過B,C兩點作這條水平線的垂線,垂足分別為D,E,由后坡度AB與前坡度AC相等知∠BAD=∠CAE=30°,從而得出BD=2、CE=3,據(jù)此可得.【詳解】解:過A作一條水平線,分別過B,C兩點作這條水平線的垂線,垂足分別為D,E,
∵房子后坡度AB與前坡度AC相等,
∴∠BAD=∠CAE,
∵∠BAC=120°,
∴∠BAD=∠CAE=30°,
在直角△ABD中,AB=4米,
∴BD=2米,
在直角△ACE中,AC=6米,
∴CE=3米,
∴a-b=1米.【點睛】本題考查了解直角三角形的應(yīng)用-坡度坡角問題,解題的關(guān)鍵是根據(jù)題意構(gòu)建直角三角形,并熟練掌握坡度坡角的概念.19、(1)商店經(jīng)營該商品一天要獲利潤2160元,則每件商品應(yīng)降價2元或8元;(2)y=﹣10x2+100x+2000,當(dāng)x=5時,商場獲取最大利潤為2250元.【解析】
(1)根據(jù)“總利潤=每件的利潤×每天的銷量”列方程求解可得;
(2)利用(1)中的相等關(guān)系列出函數(shù)解析式,配方成頂點式,利用二次函數(shù)的性質(zhì)求解可得.【詳解】解:(1)依題意得:(100﹣80﹣x)(100+10x)=2160,即x2﹣10x+16=0,解得:x1=2,x2=8,經(jīng)檢驗:x1=2,x2=8,答:商店經(jīng)營該商品一天要獲利潤2160元,則每件商品應(yīng)降價2元或8元;(2)依題意得:y=(100﹣80﹣x)(100+10x)=﹣10x2+100x+2000=﹣10(x﹣5)2+2250,∵﹣10<0,∴當(dāng)x=5時,y取得最大值為2250元.答:y=﹣10x2+100x+2000,當(dāng)x=5時,商場獲取最大利潤為2250元.【點睛】本題考查二次函數(shù)的應(yīng)用和一元二次方程的應(yīng)用,解題關(guān)鍵是由題意確定題目蘊含的相等關(guān)系,并據(jù)此列出方程或函數(shù)解析式.20、(1)50;(2)16;(3)56(4)見解析【解析】
(1)用A等級的頻數(shù)除以它所占的百分比即可得到樣本容量;
(2)用總?cè)藬?shù)分別減去A、B、D等級的人數(shù)得到C等級的人數(shù),然后補全條形圖;(3)用700乘以D等級的百分比可估計該中學(xué)八年級學(xué)生中體能測試結(jié)果為D等級的學(xué)生數(shù);
(4)畫樹狀圖展示12種等可能的結(jié)果數(shù),再找出抽取的兩人恰好都是男生的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】(1)10÷20%=50(名)答:本次抽樣調(diào)查共抽取了50名學(xué)生.(2)50-10-20-4=16(名)答:測試結(jié)果為C等級的學(xué)生有16名.圖形統(tǒng)計圖補充完整如下圖所示:(3)700×=56(名)答:估計該中學(xué)八年級學(xué)生中體能測試結(jié)果為D等級的學(xué)生有56名.(4)畫樹狀圖為:
共有12種等可能的結(jié)果數(shù),其中抽取的兩人恰好都是男生的結(jié)果數(shù)為2,
所以抽取的兩人恰好都是男生的概率=.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.也考查了統(tǒng)計圖.21、(1)證明見解析;(2)AE=.【解析】
(1)連結(jié)AC、AC′,根據(jù)矩形的性質(zhì)得到∠ABC=90°,即AB⊥CC′,根據(jù)旋轉(zhuǎn)的性質(zhì)即可得到結(jié)論;(2)根據(jù)矩形的性質(zhì)得到AD=BC,∠D=∠ABC′=90°,根據(jù)旋轉(zhuǎn)的性質(zhì)得到BC′=AD′,AD=AD′,證得BC′=AD′,根據(jù)全等三角形的性質(zhì)得到BE=D′E,設(shè)AE=x,則D′E=2﹣x,根據(jù)勾股定理列方程即可得到結(jié)論.【詳解】解::(1)連結(jié)AC、AC′,∵四邊形ABCD為矩形,∴∠ABC=90°,即AB⊥CC′,∵將矩形ABCD繞點A順時針旋轉(zhuǎn),得到矩形AB′C′D′,∴AC=AC′,∴BC=BC′;(2)∵四邊形ABCD為矩形,∴AD=BC,∠D=∠ABC′=90°,∵BC=BC′,∴BC′=AD′,∵將矩形ABCD繞點A順時針旋轉(zhuǎn),得到矩形AB′C′D′,∴AD=AD′,∴BC′=AD′,在△AD′E與△C′BE中∴△AD′E≌△C′BE,∴BE=D′E,設(shè)AE=x,則D′E=2﹣x,在Rt△AD′E中,∠D′=90°,由勾定理,得x2﹣(2﹣x)2=1,解得x=,∴AE=.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),三角形全等的判定和性質(zhì),勾股定理的應(yīng)用等,熟練掌握性質(zhì)定理是解題的關(guān)鍵.22、10【解析】試題分析:如圖:過點C作CD⊥AB于點D,在Rt△ACD中,利用∠ACD的正切可得AD=0.625CD,同樣在Rt△BCD中,可得BD=0.755CD,再根據(jù)AB=BD-CD=780,代入進(jìn)行求解即可得.試題解析:如圖:過點C作CD⊥AB于點D,由已知可得:∠ACD=32°,∠BCD=37°,在Rt△ACD中,∠ADC=90°,∴AD=CD·tan∠ACD=CD·tan32°=0.625CD,在Rt△BCD中,∠BDC=90°,∴BD=CD·tan∠BCD=CD·tan37°=0.755CD,∵AB=BD-CD=780,∴0.755CD-0.625CD=780,∴CD=10,答:小島到海岸線的距離是10米.【點睛】本題考查了解直角三角形的應(yīng)用,正確添加輔助線構(gòu)造直角三角形、根據(jù)圖形靈活選用三角函數(shù)進(jìn)行求解是關(guān)鍵.23、(1)(m,2m﹣2);(2)S△ABC=﹣;(3)m的值為或10+2.【解析】分析:(1)利用配方法將二次函數(shù)解析式由一般式變形為頂點式,此題得解;(2)過點C作直線AB的垂線,交線段AB的延長線于點D,由AB∥x軸且AB=1,可得出點B的坐標(biāo)為(m+2,1a+2m?2),設(shè)BD=t,則點C的坐標(biāo)為(m+2+t,1a+2m?2?t),利用二次函數(shù)圖象上點的坐標(biāo)特征可得出關(guān)于t的一元二次方程,解之取其正值即可得出t值,再利用三角形的面積公式即可得出S△ABC的值;(3)由(2)的結(jié)論結(jié)合S△ABC=2可求出a值,分三種情況考慮:①當(dāng)m>2m?2,即m<2時,x=2m?2時y取最大值,利用二次函數(shù)圖象上點的坐標(biāo)特征可得出關(guān)于m的一元二次方程,解之可求出m的值;②當(dāng)2m?2≤m≤2m?2,即2≤m≤2時,x=m時y取最大值,利用二次函數(shù)圖象上點的坐標(biāo)特征可得出
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《唯美模板》課件
- 《禮儀插花的應(yīng)用》課件
- 單位管理制度集粹匯編人員管理十篇
- 《離合器檢修》課件
- 單位管理制度匯編大合集人事管理十篇
- 單位管理制度分享匯編【人力資源管理】十篇
- 單位管理制度分享大全職員管理篇
- 單位管理制度范例選集職員管理篇十篇
- 《中級計量經(jīng)濟(jì)學(xué)》課程教學(xué)大綱 (二)
- 八下期中測試卷02【測試范圍:第1-11課】(原卷版)
- 蘇教版(2024新版)七年級上冊生物期末模擬試卷 3套(含答案)
- 《項目管理》完整課件
- 2024-2030年中國苯胺行業(yè)現(xiàn)狀動態(tài)與需求前景展望報告
- 英雄之旅思維模型
- 解一元二次方程(公式法)(教學(xué)設(shè)計)-九年級數(shù)學(xué)上冊同步備課系列
- 冬季傳染病預(yù)防-(課件)-小學(xué)主題班會課件
- 2024年秋新滬教牛津版英語三年級上冊 Unit 6 第1課時 教學(xué)課件
- 江蘇揚州中學(xué)教育集團(tuán)2023-2024學(xué)年中考三模數(shù)學(xué)試題含解析
- 2025年統(tǒng)編版高考?xì)v史一輪復(fù)習(xí):北洋軍閥統(tǒng)治時期的政治、經(jīng)濟(jì)與文化 講義
- 電影放映設(shè)備日常維護(hù)保養(yǎng)規(guī)程
- TSHZSAQS 00255-2024 食葵病蟲害防治技術(shù)規(guī)范
評論
0/150
提交評論