河南省范縣第一中學2024屆高三六校第一次聯(lián)考數學試卷含解析_第1頁
河南省范縣第一中學2024屆高三六校第一次聯(lián)考數學試卷含解析_第2頁
河南省范縣第一中學2024屆高三六校第一次聯(lián)考數學試卷含解析_第3頁
河南省范縣第一中學2024屆高三六校第一次聯(lián)考數學試卷含解析_第4頁
河南省范縣第一中學2024屆高三六校第一次聯(lián)考數學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河南省范縣第一中學2024屆高三六校第一次聯(lián)考數學試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設全集,集合,.則集合等于()A. B. C. D.2.已知雙曲線的一條漸近線為,圓與相切于點,若的面積為,則雙曲線的離心率為()A. B. C. D.3.已知,函數,若函數恰有三個零點,則()A. B.C. D.4.己知,,,則()A. B. C. D.5.復數(i為虛數單位)的共軛復數是A.1+i B.1?i C.?1+i D.?1?i6.已知實數,滿足,則的最大值等于()A.2 B. C.4 D.87.已知分別為雙曲線的左、右焦點,過的直線與雙曲線的左、右兩支分別交于兩點,若,則雙曲線的離心率為()A. B.4 C.2 D.8.已知集合A={x∈N|x2<8x},B={2,3,6},C={2,3,7},則=()A.{2,3,4,5} B.{2,3,4,5,6}C.{1,2,3,4,5,6} D.{1,3,4,5,6,7}9.中國古典樂器一般按“八音”分類.這是我國最早按樂器的制造材料來對樂器進行分類的方法,最先見于《周禮·春官·大師》,分為“金、石、土、革、絲、木、匏(páo)、竹”八音,其中“金、石、木、革”為打擊樂器,“土、匏、竹”為吹奏樂器,“絲”為彈撥樂器.現從“八音”中任取不同的“兩音”,則含有打擊樂器的概率為()A. B. C. D.10.在平行六面體中,M為與的交點,若,,則與相等的向量是()A. B. C. D.11.設、分別是定義在上的奇函數和偶函數,且,則()A. B.0 C.1 D.312.已知為非零向量,“”為“”的()A.充分不必要條件 B.充分必要條件C.必要不充分條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.己知雙曲線的左、右焦點分別為,直線是雙曲線過第一、三象限的漸近線,記直線的傾斜角為,直線,,垂足為,若在雙曲線上,則雙曲線的離心率為_______14.平面向量,,(R),且與的夾角等于與的夾角,則.15.已知集合,,則__________.16.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是______cm2,體積是_____三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在四棱錐中,底面是平行四邊形,底面.(1)證明:;(2)求二面角的正弦值.18.(12分)在平面直角坐標系中,曲線的參數方程為(為參數),以原點為極點,軸的非負半軸為極軸,建立極坐標系,曲線的極坐標方程為.(1)求曲線的極坐標方程以及曲線的直角坐標方程;(2)若直線與曲線、曲線在第一象限交于兩點,且,點的坐標為,求的面積.19.(12分)語音交互是人工智能的方向之一,現在市場上流行多種可實現語音交互的智能音箱.主要代表有小米公司的“小愛同學”智能音箱和阿里巴巴的“天貓精靈”智能音箱,它們可以通過語音交互滿足人們的部分需求.某經銷商為了了解不同智能音箱與其購買者性別之間的關聯(lián)程度,從某地區(qū)隨機抽取了100名購買“小愛同學”和100名購買“天貓精靈”的人,具體數據如下:“小愛同學”智能音箱“天貓精靈”智能音箱合計男4560105女554095合計100100200(1)若該地區(qū)共有13000人購買了“小愛同學”,有12000人購買了“天貓精靈”,試估計該地區(qū)購買“小愛同學”的女性比購買“天貓精靈”的女性多多少人?(2)根據列聯(lián)表,能否有95%的把握認為購買“小愛同學”、“天貓精靈”與性別有關?附:0.100.050.0250.010.0050.0012.7063.8415.0246.6357.87910.82820.(12分)分別為的內角的對邊.已知.(1)若,求;(2)已知,當的面積取得最大值時,求的周長.21.(12分)已知圓的極坐標方程是,以極點為平面直角坐標系的原點,極軸為軸的正半軸,建立平面直角坐標系,直線的參數方程是是參數),若直線與圓相切,求實數的值.22.(10分)已知某種細菌的適宜生長溫度為12℃~27℃,為了研究該種細菌的繁殖數量(單位:個)隨溫度(單位:℃)變化的規(guī)律,收集數據如下:溫度/℃14161820222426繁殖數量/個2530385066120218對數據進行初步處理后,得到了一些統(tǒng)計量的值,如表所示:20784.11123.8159020.5其中,.(1)請繪出關于的散點圖,并根據散點圖判斷與哪一個更適合作為該種細菌的繁殖數量關于溫度的回歸方程類型(給出判斷即可,不必說明理由);(2)根據(1)的判斷結果及表格數據,建立關于的回歸方程(結果精確到0.1);(3)當溫度為27℃時,該種細菌的繁殖數量的預報值為多少?參考公式:對于一組數據,其回歸直線的斜率和截距的最小二成估計分別為,,參考數據:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

先算出集合,再與集合B求交集即可.【詳解】因為或.所以,又因為.所以.故選:A.【點睛】本題考查集合間的基本運算,涉及到解一元二次不等式、指數不等式,是一道容易題.2、D【解析】

由圓與相切可知,圓心到的距離為2,即.又,由此求出的值,利用離心率公式,求出e.【詳解】由題意得,,,.故選:D.【點睛】本題考查了雙曲線的幾何性質,直線與圓相切的性質,離心率的求法,屬于中檔題.3、C【解析】

當時,最多一個零點;當時,,利用導數研究函數的單調性,根據單調性畫函數草圖,根據草圖可得.【詳解】當時,,得;最多一個零點;當時,,,當,即時,,在,上遞增,最多一個零點.不合題意;當,即時,令得,,函數遞增,令得,,函數遞減;函數最多有2個零點;根據題意函數恰有3個零點函數在上有一個零點,在,上有2個零點,如圖:且,解得,,.故選.【點睛】遇到此類問題,不少考生會一籌莫展.由于方程中涉及兩個參數,故按“一元化”想法,逐步分類討論,這一過程中有可能分類不全面、不徹底.4、B【解析】

先將三個數通過指數,對數運算變形,再判斷.【詳解】因為,,所以,故選:B.【點睛】本題主要考查指數、對數的大小比較,還考查推理論證能力以及化歸與轉化思想,屬于中檔題.5、B【解析】分析:化簡已知復數z,由共軛復數的定義可得.詳解:化簡可得z=∴z的共軛復數為1﹣i.故選B.點睛:本題考查復數的代數形式的運算,涉及共軛復數,屬基礎題.6、D【解析】

畫出可行域,計算出原點到可行域上的點的最大距離,由此求得的最大值.【詳解】畫出可行域如下圖所示,其中,由于,,所以,所以原點到可行域上的點的最大距離為.所以的最大值為.故選:D【點睛】本小題主要考查根據可行域求非線性目標函數的最值,考查數形結合的數學思想方法,屬于基礎題.7、A【解析】

由已知得,,由已知比值得,再利用雙曲線的定義可用表示出,,用勾股定理得出的等式,從而得離心率.【詳解】.又,可令,則.設,得,即,解得,∴,,由得,,,該雙曲線的離心率.故選:A.【點睛】本題考查求雙曲線的離心率,解題關鍵是由向量數量積為0得出垂直關系,利用雙曲線的定義把雙曲線上的點到焦點的距離都用表示出來,從而再由勾股定理建立的關系.8、C【解析】

根據集合的并集、補集的概念,可得結果.【詳解】集合A={x∈N|x2<8x}={x∈N|0<x<8},所以集合A={1,2,3,4,5,6,7}B={2,3,6},C={2,3,7},故={1,4,5,6},所以={1,2,3,4,5,6}.故選:C.【點睛】本題考查的是集合并集,補集的概念,屬基礎題.9、B【解析】

分別求得所有基本事件個數和滿足題意的基本事件個數,根據古典概型概率公式可求得結果.【詳解】從“八音”中任取不同的“兩音”共有種取法;“兩音”中含有打擊樂器的取法共有種取法;所求概率.故選:.【點睛】本題考查古典概型概率問題的求解,關鍵是能夠利用組合的知識求得基本事件總數和滿足題意的基本事件個數.10、D【解析】

根據空間向量的線性運算,用作基底表示即可得解.【詳解】根據空間向量的線性運算可知因為,,則即,故選:D.【點睛】本題考查了空間向量的線性運算,用基底表示向量,屬于基礎題.11、C【解析】

先根據奇偶性,求出的解析式,令,即可求出。【詳解】因為、分別是定義在上的奇函數和偶函數,,用替換,得,化簡得,即令,所以,故選C。【點睛】本題主要考查函數性質奇偶性的應用。12、B【解析】

由數量積的定義可得,為實數,則由可得,根據共線的性質,可判斷;再根據判斷,由等價法即可判斷兩命題的關系.【詳解】若成立,則,則向量與的方向相同,且,從而,所以;若,則向量與的方向相同,且,從而,所以.所以“”為“”的充分必要條件.故選:B【點睛】本題考查充分條件和必要條件的判定,考查相等向量的判定,考查向量的模、數量積的應用.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由,則,所以點,因為,可得,點坐標化簡為,代入雙曲線的方程求解.【詳解】設,則,即,解得,則,所以,即,代入雙曲線的方程可得,所以所以解得.故答案為:【點睛】本題主要考查了直線與雙曲線的位置關系,及三角恒等變換,還考查了運算求解的能力和數形結合的思想,屬于中檔題.14、2【解析】試題分析:,與的夾角等于與的夾角,所以考點:向量的坐標運算與向量夾角15、【解析】

直接根據集合和集合求交集即可.【詳解】解:,,所以.故答案為:【點睛】本題考查集合的交集運算,是基礎題.16、20+45,8【解析】試題分析:由題意得,該幾何體為三棱柱,故其表面積S=2×1體積V=12×4×2×2=8,故填:20+4考點:1.三視圖;2.空間幾何體的表面積與體積.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】

(1)利用正弦定理求得,由此得到,結合證得平面,由此證得.(2)建立空間直角坐標系,利用平面和平面的法向量,計算出二面角的余弦值,再轉化為正弦值.【詳解】(1)在中,由正弦定理可得:,,底面,平面,;(2)以為坐標原點建立如圖所示的空間直角坐標系,,設平面的法向量為,由可得:,令,則,設平面的法向量為,由可得:,令,則,設二面角的平面角為,由圖可知為鈍角,則,,故二面角的正弦值為.【點睛】本小題主要考查線線垂直的證明,考查空間向量法求二面角,考查空間想象能力和邏輯推理能力,屬于中檔題.18、(1)的極坐標方程為,的直角坐標方程為(2)【解析】

(1)先把曲線的參數方程消參后,轉化為普通方程,再利用求得極坐標方程.將,化為,再利用求得曲線的普通方程.(2)設直線的極角,代入,得,將代入,得,由,得,即,從而求得,,從而求得,再利用求解.【詳解】(1)依題意,曲線,即,故,即.因為,故,即,即.(2)將代入,得,將代入,得,由,得,得,解得,則.又,故,故的面積.【點睛】本題考查極坐標方程與直角坐標方程、參數方程與普通方程的轉化、極坐標的幾何意義,還考查推理論證能力以及數形結合思想,屬于中檔題.19、(1)多2350人;(2)有95%的把握認為購買“小愛同學”、“天貓精靈”與性別有關.【解析】

(1)根據題意,知100人中購買“小愛同學”的女性有55人,購買“天貓精靈”的女性有40人,即可估計該地區(qū)購買“小愛同學”的女性人數和購買“天貓精靈”的女性的人數,即可求得答案;(2)根據列聯(lián)表和給出的公式,求出,與臨界值比較,即可得出結論.【詳解】解:(1)由題可知,100人中購買“小愛同學”的女性有55人,購買“天貓精靈”的女性有40人,由于地區(qū)共有13000人購買了“小愛同學”,有12000人購買了“天貓精靈”,估計購買“小愛同學”的女性有人.估計購買“天貓精靈”的女性有人.則,∴估計該地區(qū)購買“小愛同學”的女性比購買“天貓精靈”的女性多2350人.(2)由題可知,,∴有95%的把握認為購買“小愛同學”、“天貓精靈”與性別有關.【點睛】本題考查隨機抽樣估計總體以及獨立性檢驗的應用,考查計算能力.20、(1)(2)【解析】

(1)根據正弦定理,將,化角為邊,即可求出,再利用正弦定理即可求出;(2)根據,選擇,所以當的面積取得最大值時,最大,結合(1)中條件,即可求出最大時,對應的的值,再根據余弦定理求出邊,進而得到的周長.【詳解】(1)由,得,即.因為,所以.由,得.(2)因為,所以,當且僅當時,等號成立.因為的面積.所以當時,的面積取得最大值,此時,則,所以的周長為.【點睛】本題主要考查利用正弦定理和余弦定理解三角形,涉及到基本不等式的應用,意在考查學生的轉化能力和數學運算能力.21、【解析】

將圓的極坐標方程化為直角坐標方程,直線的參數方程化為普通方程,再根據直線與圓相切,利用圓心到直線的距離等于半徑,即可求實數的值.【詳解】由,得,,即圓的方程為,又由消,得,直線與圓相切,,.【點睛】本題重點考查方程的互化,考查直線與圓的位置關系

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論