江西省南昌縣重點(diǎn)名校2023-2024學(xué)年中考數(shù)學(xué)考試模擬沖刺卷含解析_第1頁
江西省南昌縣重點(diǎn)名校2023-2024學(xué)年中考數(shù)學(xué)考試模擬沖刺卷含解析_第2頁
江西省南昌縣重點(diǎn)名校2023-2024學(xué)年中考數(shù)學(xué)考試模擬沖刺卷含解析_第3頁
江西省南昌縣重點(diǎn)名校2023-2024學(xué)年中考數(shù)學(xué)考試模擬沖刺卷含解析_第4頁
江西省南昌縣重點(diǎn)名校2023-2024學(xué)年中考數(shù)學(xué)考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

江西省南昌縣重點(diǎn)名校2023-2024學(xué)年中考數(shù)學(xué)考試模擬沖刺卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.下列計(jì)算正確的是()A.2x﹣x=1 B.x2?x3=x6C.(m﹣n)2=m2﹣n2 D.(﹣xy3)2=x2y62.某果園2011年水果產(chǎn)量為100噸,2013年水果產(chǎn)量為144噸,求該果園水果產(chǎn)量的年平均增長率.設(shè)該果園水果產(chǎn)量的年平均增長率為x,則根據(jù)題意可列方程為()A.144(1﹣x)2=100 B.100(1﹣x)2=144 C.144(1+x)2=100 D.100(1+x)2=1443.“龜兔賽跑”是同學(xué)們熟悉的寓言故事.如圖所示,表示了寓言中的龜、兔的路程S和時(shí)間t的關(guān)系(其中直線段表示烏龜,折線段表示兔子).下列敘述正確的是()A.賽跑中,兔子共休息了50分鐘B.烏龜在這次比賽中的平均速度是0.1米/分鐘C.兔子比烏龜早到達(dá)終點(diǎn)10分鐘D.烏龜追上兔子用了20分鐘4.如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC,ED垂直平分AB于D,若AC=9,則AE的值是()A. B. C.6 D.45.把三角形按如圖所示的規(guī)律拼圖案,其中第①個(gè)圖案中有1個(gè)三角形,第②個(gè)圖案中有4個(gè)三角形,第③個(gè)圖案中有8個(gè)三角形,…,按此規(guī)律排列下去,則第⑦個(gè)圖案中三角形的個(gè)數(shù)為()A.15 B.17 C.19 D.246.如圖,共有12個(gè)大不相同的小正方形,其中陰影部分的5個(gè)小正方形是一個(gè)正方體的表面展開圖的一部分.現(xiàn)從其余的小正方形中任取一個(gè)涂上陰影,則能構(gòu)成這個(gè)正方體的表面展開圖的概率是()A. B. C. D.7.下列二次根式中,最簡二次根式的是()A. B. C. D.8.下列哪一個(gè)是假命題()A.五邊形外角和為360°B.切線垂直于經(jīng)過切點(diǎn)的半徑C.(3,﹣2)關(guān)于y軸的對稱點(diǎn)為(﹣3,2)D.拋物線y=x2﹣4x+2017對稱軸為直線x=29.如圖,直線AB∥CD,AE平分∠CAB,AE與CD相交于點(diǎn)E,∠ACD=40°,則∠DEA=()A.40° B.110° C.70° D.140°10.如圖已知⊙O的內(nèi)接五邊形ABCDE,連接BE、CE,若AB=BC=CE,∠EDC=130°,則∠ABE的度數(shù)為()A.25° B.30° C.35° D.40°二、填空題(共7小題,每小題3分,滿分21分)11.如圖,平面直角坐標(biāo)系中,經(jīng)過點(diǎn)B(﹣4,0)的直線y=kx+b與直線y=mx+2相交于點(diǎn)A(,-1),則不等式mx+2<kx+b<0的解集為____.12.如圖,已知等腰直角三角形ABC的直角邊長為1,以Rt△ABC的斜邊AC為直角邊,畫第二個(gè)等腰直角三角形ACD,再以Rt△ACD的斜邊AD為直角邊,畫第三個(gè)等腰直角三角形ADE……依此類推,直到第五個(gè)等腰直角三角形AFG,則由這五個(gè)等腰直角三角形所構(gòu)成的圖形的面積為__________.13.如圖所示,點(diǎn)C在反比例函數(shù)的圖象上,過點(diǎn)C的直線與x軸、y軸分別交于點(diǎn)A、B,且,已知的面積為1,則k的值為______.14.如圖所示一棱長為3cm的正方體,把所有的面均分成3×3個(gè)小正方形.其邊長都為1cm,假設(shè)一只螞蟻每秒爬行2cm,則它從下底面點(diǎn)A沿表面爬行至側(cè)面的B點(diǎn),最少要用_____秒鐘.15.一只螞蟻從數(shù)軸上一點(diǎn)A出發(fā),爬了7個(gè)單位長度到了+1,則點(diǎn)A所表示的數(shù)是_____16.在線段AB上,點(diǎn)C把線段AB分成兩條線段AC和BC,如果,那么點(diǎn)C叫做線段AB的黃金分割點(diǎn).若點(diǎn)P是線段MN的黃金分割點(diǎn),當(dāng)MN=1時(shí),PM的長是_____.17.如圖,在△OAB中,C是AB的中點(diǎn),反比例函數(shù)y=(k>0)在第一象限的圖象經(jīng)過A,C兩點(diǎn),若△OAB面積為6,則k的值為_____.三、解答題(共7小題,滿分69分)18.(10分)(1)問題發(fā)現(xiàn)如圖1,在Rt△ABC中,∠A=90°,=1,點(diǎn)P是邊BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),∠PAD=90°,∠APD=∠B,連接CD.(1)①求的值;②求∠ACD的度數(shù).(2)拓展探究如圖2,在Rt△ABC中,∠A=90°,=k.點(diǎn)P是邊BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),∠PAD=90°,∠APD=∠B,連接CD,請判斷∠ACD與∠B的數(shù)量關(guān)系以及PB與CD之間的數(shù)量關(guān)系,并說明理由.(3)解決問題如圖3,在△ABC中,∠B=45°,AB=4,BC=12,P是邊BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),∠PAD=∠BAC,∠APD=∠B,連接CD.若PA=5,請直接寫出CD的長.19.(5分)如圖,在等邊三角形ABC中,點(diǎn)D,E分別在BC,AB上,且∠ADE=60°.求證:△ADC~△DEB.20.(8分)已知:AB為⊙O上一點(diǎn),如圖,,,BH與⊙O相切于點(diǎn)B,過點(diǎn)C作BH的平行線交AB于點(diǎn)E.(1)求CE的長;(2)延長CE到F,使,連結(jié)BF并延長BF交⊙O于點(diǎn)G,求BG的長;(3)在(2)的條件下,連結(jié)GC并延長GC交BH于點(diǎn)D,求證:21.(10分)如圖,在平面直角坐標(biāo)系中,以直線為對稱軸的拋物線與直線交于,兩點(diǎn),與軸交于,直線與軸交于點(diǎn).(1)求拋物線的函數(shù)表達(dá)式;(2)設(shè)直線與拋物線的對稱軸的交點(diǎn)為,是拋物線上位于對稱軸右側(cè)的一點(diǎn),若,且與的面積相等,求點(diǎn)的坐標(biāo);(3)若在軸上有且只有一點(diǎn),使,求的值.22.(10分)某校為了了解九年級學(xué)生體育測試成績情況,以九年(1)班學(xué)生的體育測試成績?yōu)闃颖?,按A、B、C、D四個(gè)等級進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制如下兩幅統(tǒng)計(jì)圖,請你結(jié)合圖中所給信息解答下列問題:(說明:A級:90分﹣100分;B級:75分﹣89分;C級:60分﹣74分;D級:60分以下)(1)寫出D級學(xué)生的人數(shù)占全班總?cè)藬?shù)的百分比為,C級學(xué)生所在的扇形圓心角的度數(shù)為;(2)該班學(xué)生體育測試成績的中位數(shù)落在等級內(nèi);(3)若該校九年級學(xué)生共有500人,請你估計(jì)這次考試中A級和B級的學(xué)生共有多少人?23.(12分)如圖,AB是⊙O的直徑,∠BAC=90°,四邊形EBOC是平行四邊形,EB交⊙O于點(diǎn)D,連接CD并延長交AB的延長線于點(diǎn)F.(1)求證:CF是⊙O的切線;(2)若∠F=30°,EB=6,求圖中陰影部分的面積.(結(jié)果保留根號和π)24.(14分)(1)計(jì)算:sin45°(2)解不等式組:

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、D【解析】

根據(jù)合并同類項(xiàng)的法則,積的乘方,完全平方公式,同底數(shù)冪的乘法的性質(zhì),對各選項(xiàng)分析判斷后利用排除法求解.【詳解】解:A、2x-x=x,錯(cuò)誤;B、x2?x3=x5,錯(cuò)誤;C、(m-n)2=m2-2mn+n2,錯(cuò)誤;D、(-xy3)2=x2y6,正確;故選D.【點(diǎn)睛】考查了整式的運(yùn)算能力,對于相關(guān)的整式運(yùn)算法則要求學(xué)生很熟練,才能正確求出結(jié)果.2、D【解析】試題分析:2013年的產(chǎn)量=2011年的產(chǎn)量×(1+年平均增長率)2,把相關(guān)數(shù)值代入即可.解:2012年的產(chǎn)量為100(1+x),2013年的產(chǎn)量為100(1+x)(1+x)=100(1+x)2,即所列的方程為100(1+x)2=144,故選D.點(diǎn)評:考查列一元二次方程;得到2013年產(chǎn)量的等量關(guān)系是解決本題的關(guān)鍵.3、D【解析】分析:根據(jù)圖象得出相關(guān)信息,并對各選項(xiàng)一一進(jìn)行判斷即可.詳解:由圖象可知,在賽跑中,兔子共休息了:50-10=40(分鐘),故A選項(xiàng)錯(cuò)誤;烏龜跑500米用了50分鐘,平均速度為:(米/分鐘),故B選項(xiàng)錯(cuò)誤;兔子是用60分鐘到達(dá)終點(diǎn),烏龜是用50分鐘到達(dá)終點(diǎn),兔子比烏龜晚到達(dá)終點(diǎn)10分鐘,故C選項(xiàng)錯(cuò)誤;在比賽20分鐘時(shí),烏龜和兔子都距起點(diǎn)200米,即烏龜追上兔子用了20分鐘,故D選項(xiàng)正確.故選D.點(diǎn)睛:本題考查了從圖象中獲取信息的能力.正確識別圖象、獲取信息并進(jìn)行判斷是解題的關(guān)鍵.4、C【解析】

由角平分線的定義得到∠CBE=∠ABE,再根據(jù)線段的垂直平分線的性質(zhì)得到EA=EB,則∠A=∠ABE,可得∠CBE=30°,根據(jù)含30度的直角三角形三邊的關(guān)系得到BE=2EC,即AE=2EC,由AE+EC=AC=9,即可求出AC.【詳解】解:∵BE平分∠ABC,∴∠CBE=∠ABE,∵ED垂直平分AB于D,∴EA=EB,∴∠A=∠ABE,∴∠CBE=30°,∴BE=2EC,即AE=2EC,而AE+EC=AC=9,∴AE=1.故選C.5、D【解析】

由圖可知:第①個(gè)圖案有三角形1個(gè),第②圖案有三角形1+3=4個(gè),第③個(gè)圖案有三角形1+3+4=8個(gè),第④個(gè)圖案有三角形1+3+4+4=12,…第n個(gè)圖案有三角形4(n﹣1)個(gè)(n>1時(shí)),由此得出規(guī)律解決問題.【詳解】解:解:∵第①個(gè)圖案有三角形1個(gè),第②圖案有三角形1+3=4個(gè),第③個(gè)圖案有三角形1+3+4=8個(gè),…∴第n個(gè)圖案有三角形4(n﹣1)個(gè)(n>1時(shí)),則第⑦個(gè)圖中三角形的個(gè)數(shù)是4×(7﹣1)=24個(gè),故選D.【點(diǎn)睛】本題考查了規(guī)律型:圖形的變化類,根據(jù)給定圖形中三角形的個(gè)數(shù),找出an=4(n﹣1)是解題的關(guān)鍵.6、D【解析】

由正方體表面展開圖的形狀可知,此正方體還缺一個(gè)上蓋,故應(yīng)在圖中四塊相連的空白正方形中選一塊,再根據(jù)概率公式解答即可.【詳解】因?yàn)楣灿?2個(gè)大小相同的小正方形,其中陰影部分的5個(gè)小正方形是一個(gè)正方體的表面展開圖的一部分,所以剩下7個(gè)小正方形.在其余的7個(gè)小正方形中任取一個(gè)涂上陰影,能構(gòu)成這個(gè)正方體的表面展開圖的小正方形有4個(gè),因此先從其余的小正方形中任取一個(gè)涂上陰影,能構(gòu)成這個(gè)正方體的表面展開圖的概率是.故選D.【點(diǎn)睛】本題考查了概率公式,用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比,掌握概率公式是本題的關(guān)鍵.7、C【解析】

判定一個(gè)二次根式是不是最簡二次根式的方法,就是逐個(gè)檢查最簡二次根式的兩個(gè)條件是否同時(shí)滿足,同時(shí)滿足的就是最簡二次根式,否則就不是.【詳解】A、=,被開方數(shù)含分母,不是最簡二次根式;故A選項(xiàng)錯(cuò)誤;B、=,被開方數(shù)為小數(shù),不是最簡二次根式;故B選項(xiàng)錯(cuò)誤;C、,是最簡二次根式;故C選項(xiàng)正確;D.=,被開方數(shù),含能開得盡方的因數(shù)或因式,故D選項(xiàng)錯(cuò)誤;故選C.考點(diǎn):最簡二次根式.8、C【解析】分析:根據(jù)每個(gè)選項(xiàng)所涉及的數(shù)學(xué)知識進(jìn)行分析判斷即可.詳解:A選項(xiàng)中,“五邊形的外角和為360°”是真命題,故不能選A;B選項(xiàng)中,“切線垂直于經(jīng)過切點(diǎn)的半徑”是真命題,故不能選B;C選項(xiàng)中,因?yàn)辄c(diǎn)(3,-2)關(guān)于y軸的對稱點(diǎn)的坐標(biāo)是(-3,-2),所以該選項(xiàng)中的命題是假命題,所以可以選C;D選項(xiàng)中,“拋物線y=x2﹣4x+2017對稱軸為直線x=2”是真命題,所以不能選D.故選C.點(diǎn)睛:熟記:(1)凸多邊形的外角和都是360°;(2)切線的性質(zhì);(3)點(diǎn)P(a,b)關(guān)于y軸的對稱點(diǎn)為(-a,b);(4)拋物線的對稱軸是直線:等數(shù)學(xué)知識,是正確解答本題的關(guān)鍵.9、B【解析】

先由平行線性質(zhì)得出∠ACD與∠BAC互補(bǔ),并根據(jù)已知∠ACD=40°計(jì)算出∠BAC的度數(shù),再根據(jù)角平分線性質(zhì)求出∠BAE的度數(shù),進(jìn)而得到∠DEA的度數(shù).【詳解】∵AB∥CD,∴∠ACD+∠BAC=180°,∵∠ACD=40°,∴∠BAC=180°﹣40°=140°,∵AE平分∠CAB,∴∠BAE=∠BAC=×140°=70°,∴∠DEA=180°﹣∠BAE=110°,故選B.【點(diǎn)睛】本題考查了平行線的性質(zhì)和角平分線的定義,解題的關(guān)鍵是熟練掌握兩直線平行,同旁內(nèi)角互補(bǔ).10、B【解析】

如圖,連接OA,OB,OC,OE.想辦法求出∠AOE即可解決問題.【詳解】如圖,連接OA,OB,OC,OE.∵∠EBC+∠EDC=180°,∠EDC=130°,∴∠EBC=50°,∴∠EOC=2∠EBC=100°,∵AB=BC=CE,∴弧AB=弧BC=弧CE,∴∠AOB=∠BOC=∠EOC=100°,∴∠AOE=360°﹣3×100°=60°,∴∠ABE=∠AOE=30°.故選:B.【點(diǎn)睛】本題考查圓周角定理,圓心角,弧,弦之間的關(guān)系等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.二、填空題(共7小題,每小題3分,滿分21分)11、﹣4<x<﹣【解析】根據(jù)函數(shù)的圖像,可知不等式mx+2<kx+b<0的解集就是y=mx+2在函數(shù)y=kx+b的下面,且它們的值小于0的解集是﹣4<x<﹣.故答案為﹣4<x<﹣.12、12.2【解析】

∵△ABC是邊長為1的等腰直角三角形,∴S△ABC=×1×1==11-1;AC==,AD==1,∴S△ACD==1=11-1∴第n個(gè)等腰直角三角形的面積是1n-1.∴S△AEF=14-1=4,S△AFG=12-1=8,由這五個(gè)等腰直角三角形所構(gòu)成的圖形的面積為+1+1+4+8=12.2.故答案為12.2.13、1【解析】

根據(jù)題意可以設(shè)出點(diǎn)A的坐標(biāo),從而以得到點(diǎn)C和點(diǎn)B的坐標(biāo),再根據(jù)的面積為1,即可求得k的值.【詳解】解:設(shè)點(diǎn)A的坐標(biāo)為,過點(diǎn)C的直線與x軸,y軸分別交于點(diǎn)A,B,且,的面積為1,點(diǎn),點(diǎn)B的坐標(biāo)為,,解得,,故答案為:1.【點(diǎn)睛】本題考查了反比例函數(shù)系數(shù)k的幾何意義、一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,解題關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.14、2.5秒.【解析】

把此正方體的點(diǎn)A所在的面展開,然后在平面內(nèi),利用勾股定理求點(diǎn)A和B點(diǎn)間的線段長,即可得到螞蟻爬行的最短距離.在直角三角形中,一條直角邊長等于5,另一條直角邊長等于2,利用勾股定理可求得.【詳解】解:因?yàn)榕佬新窂讲晃ㄒ唬史智闆r分別計(jì)算,進(jìn)行大、小比較,再從各個(gè)路線中確定最短的路線.(1)展開前面右面由勾股定理得AB=cm;(2)展開底面右面由勾股定理得AB==5cm;所以最短路徑長為5cm,用時(shí)最少:5÷2=2.5秒.【點(diǎn)睛】本題考查了勾股定理的拓展應(yīng)用.“化曲面為平面”是解決“怎樣爬行最近”這類問題的關(guān)鍵.15、﹣6或8【解析】試題解析:當(dāng)往右移動(dòng)時(shí),此時(shí)點(diǎn)A表示的點(diǎn)為﹣6,當(dāng)往左移動(dòng)時(shí),此時(shí)點(diǎn)A表示的點(diǎn)為8.16、【解析】

設(shè)PM=x,根據(jù)黃金分割的概念列出比例式,計(jì)算即可.【詳解】設(shè)PM=x,則PN=1-x,

由得,,

化簡得:x2+x-1=0,

解得:x1=,x2=(負(fù)值舍去),

所以PM的長為.【點(diǎn)睛】本題考查的是黃金分割的概念和性質(zhì),把線段AB分成兩條線段AC和BC(AC>BC),且使AC是AB和BC的比例中項(xiàng),叫做把線段AB黃金分割.17、4【解析】

分別過點(diǎn)、點(diǎn)作的垂線,垂足分別為點(diǎn)、點(diǎn),根據(jù)是的中點(diǎn)得到為的中位線,然后設(shè),,,根據(jù),得到,最后根據(jù)面積求得,從而求得.【詳解】分別過點(diǎn)、點(diǎn)作的垂線,垂足分別為點(diǎn)、點(diǎn),如圖點(diǎn)為的中點(diǎn),為的中位線,,,,,,,,,.故答案為:.【點(diǎn)睛】本題考查了反比例函數(shù)的比例系數(shù)的幾何意義及三角形的中位線定理,關(guān)鍵是正確作出輔助線,掌握在反比例函數(shù)的圖象上任意一點(diǎn)象坐標(biāo)軸作垂線,這一點(diǎn)和垂足以及坐標(biāo)原點(diǎn)所構(gòu)成的三角形的面積是,且保持不變.三、解答題(共7小題,滿分69分)18、(1)1,45°;(2)∠ACD=∠B,=k;(3).【解析】

(1)根據(jù)已知條件推出△ABP≌△ACD,根據(jù)全等三角形的性質(zhì)得到PB=CD,∠ACD=∠B=45°,于是得到根據(jù)已知條件得到△ABC∽△APD,由相似三角形的性質(zhì)得到,得到ABP∽△CAD,根據(jù)相似三角形的性質(zhì)得到結(jié)論;過A作AH⊥BC于H,得到△ABH是等腰直角三角形,求得AH=BH=4,根據(jù)勾股定理得到根據(jù)相似三角形的性質(zhì)得到,推出△ABP∽△CAD,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.【詳解】(1)∵∠A=90°,∴AB=AC,∴∠B=45°,∵∠PAD=90°,∠APD=∠B=45°,∴AP=AD,∴∠BAP=∠CAD,在△ABP與△ACD中,AB=AC,∠BAP=∠CAD,AP=AD,∴△ABP≌△ACD,∴PB=CD,∠ACD=∠B=45°,∴=1,(2)∵∠BAC=∠PAD=90°,∠B=∠APD,∴△ABC∽△APD,∵∠BAP+∠PAC=∠PAC+∠CAD=90°,∴∠BAP=∠CAD,∴△ABP∽△CAD,∴∠ACD=∠B,(3)過A作AH⊥BC于H,∵∠B=45°,∴△ABH是等腰直角三角形,∵∴AH=BH=4,∵BC=12,∴CH=8,∴∴PH==3,∴PB=1,∵∠BAC=∠PAD=,∠B=∠APD,∴△ABC∽△APD,∴,∵∠BAP+∠PAC=∠PAC+∠CAD,∴∠BAP=∠CAD,∴△ABP∽△CAD,∴即∴過A作AH⊥BC于H,∵∠B=45°,∴△ABH是等腰直角三角形,∵∴AH=BH=4,∵BC=12,∴CH=8,∴∴PH==3,∴PB=7,∵∠BAC=∠PAD=,∠B=∠APD,∴△ABC∽△APD,∴,∵∠BAP+∠PAC=∠PAC+∠CAD,∴∠BAP=∠CAD,∴△ABP∽△CAD,∴即∴【點(diǎn)睛】本題考查了等腰直角三角形的性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),勾股定理,熟練掌握相似三角形的判定和性質(zhì)是解題的關(guān)鍵.19、見解析【解析】

根據(jù)等邊三角形性質(zhì)得∠B=∠C,根據(jù)三角形外角性質(zhì)得∠CAD=∠BDE,易證.【詳解】證明:ABC是等邊三角形,∴∠B=∠C=60°,∴∠ADB=∠CAD+∠C=∠CAD+60°,∵∠ADE=60°,∴∠ADB=∠BDE+60°,∴∠CAD=∠BDE,∴【點(diǎn)睛】考核知識點(diǎn):相似三角形的判定.根據(jù)等邊三角形性質(zhì)和三角形外角確定對應(yīng)角相等是關(guān)鍵.20、(1)CE=4;(2)BG=8;(3)證明見解析.【解析】

(1)只要證明△ABC∽△CBE,可得,由此即可解決問題;

(2)連接AG,只要證明△ABG∽△FBE,可得,由BE==4,再求出BF,即可解決問題;

(3)通過計(jì)算首先證明CF=FG,推出∠FCG=∠FGC,由CF∥BD,推出∠GCF=∠BDG,推出∠BDG=∠BGD即可證明.【詳解】解:(1)∵BH與⊙O相切于點(diǎn)B,∴AB⊥BH,∵BH∥CE,∴CE⊥AB,∵AB是直徑,∴∠CEB=∠ACB=90°,∵∠CBE=∠ABC,∴△ABC∽△CBE,∴,∵AC=,∴CE=4.(2)連接AG.∵∠FEB=∠AGB=90°,∠EBF=∠ABG,∴△ABG∽△FBE,∴,∵BE==4,∴BF=,∴,∴BG=8.(3)易知CF=4+=5,∴GF=BG﹣BF=5,∴CF=GF,∴∠FCG=∠FGC,∵CF∥BD,∴∠GCF=∠BDG,∴∠BDG=∠BGD,∴BG=BD.【點(diǎn)睛】本題考查的是切線的性質(zhì)、相似三角形的判定和性質(zhì)、勾股定理的應(yīng)用,掌握圓的切線垂直于經(jīng)過切點(diǎn)的半徑是解題的關(guān)鍵.21、(1).;(2)點(diǎn)坐標(biāo)為;.(3).【解析】分析:(1)根據(jù)已知列出方程組求解即可;(2)作AM⊥x軸,BN⊥x軸,垂足分別為M,N,求出直線l的解析式,再分兩種情況分別求出G點(diǎn)坐標(biāo)即可;(3)根據(jù)題意分析得出以AB為直徑的圓與x軸只有一個(gè)交點(diǎn),且P為切點(diǎn),P為MN的中點(diǎn),運(yùn)用三角形相似建立等量關(guān)系列出方程求解即可.詳解:(1)由題可得:解得,,.二次函數(shù)解析式為:.(2)作軸,軸,垂足分別為,則.,,,,解得,,.同理,.,①(在下方),,,即,.,,.②在上方時(shí),直線與關(guān)于對稱.,,.,,.綜上所述,點(diǎn)坐標(biāo)為;.(3)由題意可得:.,,,即.,,.設(shè)的中點(diǎn)為,點(diǎn)有且只有一個(gè),以為直徑的圓與軸只有一個(gè)交點(diǎn),且為切點(diǎn).軸,為的中點(diǎn),.,,,,即,.,.點(diǎn)睛:此題主要考查二次函數(shù)的綜合問題,會靈活根據(jù)題意求拋物線解析式,會分析題中的基本關(guān)系列方程解決問題,會分類討論各種情況是解題的關(guān)鍵.22、(1)4%;(2)72°;(3)380人【解析】

(1)根據(jù)A級人數(shù)及百分?jǐn)?shù)計(jì)算九年級(1)班學(xué)生人數(shù),用總?cè)藬?shù)減A、B、D級人數(shù),得C級人數(shù),再用C級人數(shù)÷總?cè)藬?shù)×360°,得C等級所在的扇形圓心角的度數(shù);(2)將人數(shù)按級排列,可得該班學(xué)生體育測試成績的中位數(shù);(3)用(A級百分?jǐn)?shù)+B級百分?jǐn)?shù))×1900,得這次考試中獲得A級和B級的九年級學(xué)生共有的人數(shù);(4)根據(jù)各等級人數(shù)多少,設(shè)計(jì)合格的等級,使大多數(shù)人能合格.【詳解】解:(1)九年級(1)班學(xué)生人數(shù)為13÷26%=50人,C級人數(shù)為50-13-25-2=10人,C等級所在的扇形圓心角的度數(shù)為10÷50×360°=72°,故答案為72°;(2)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論