版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
蒙古準(zhǔn)格爾旗重點(diǎn)名校2023-2024學(xué)年中考五模數(shù)學(xué)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.若二次函數(shù)y=-x2+bx+c與x軸有兩個(gè)交點(diǎn)(m,0),(m-6,0),該函數(shù)圖像向下平移n個(gè)單位長(zhǎng)度時(shí)與x軸有且只有一個(gè)交點(diǎn),則n的值是()A.3 B.6 C.9 D.362.用半徑為8的半圓圍成一個(gè)圓錐的側(cè)面,則圓錐的底面半徑等于()A.4 B.6 C.16π D.83.函數(shù)y=自變量x的取值范圍是()A.x≥1 B.x≥1且x≠3 C.x≠3 D.1≤x≤34.某種圓形合金板材的成本y(元)與它的面積(cm2)成正比,設(shè)半徑為xcm,當(dāng)x=3時(shí),y=18,那么當(dāng)半徑為6cm時(shí),成本為()A.18元 B.36元 C.54元 D.72元5.已知一個(gè)多邊形的內(nèi)角和是外角和的2倍,則此多邊形的邊數(shù)為()A.6 B.7 C.8 D.96.如圖,△ABC中,D、E分別為AB、AC的中點(diǎn),已知△ADE的面積為1,那么△ABC的面積是()A.2 B.3 C.4 D.57.a(chǎn)、b是實(shí)數(shù),點(diǎn)A(2,a)、B(3,b)在反比例函數(shù)y=﹣的圖象上,則()A.a(chǎn)<b<0 B.b<a<0 C.a(chǎn)<0<b D.b<0<a8.如圖,四邊形ABCD是菱形,對(duì)角線AC,BD交于點(diǎn)O,,,于點(diǎn)H,且DH與AC交于G,則OG長(zhǎng)度為A. B. C. D.9.下列說法中不正確的是()A.全等三角形的周長(zhǎng)相等B.全等三角形的面積相等C.全等三角形能重合D.全等三角形一定是等邊三角形10.某大型企業(yè)員工總數(shù)為28600人,數(shù)據(jù)“28600”用科學(xué)記數(shù)法可表示為()A.0.286×105B.2.86×105C.28.6×103D.2.86×104二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.八位女生的體重(單位:kg)分別為36、42、38、40、42、35、45、38,則這八位女生的體重的中位數(shù)為_____kg.12.已知A(﹣4,y1),B(﹣1,y2)是反比例函數(shù)y=﹣圖象上的兩個(gè)點(diǎn),則y1與y2的大小關(guān)系為__________.13.如圖,AB是半徑為2的⊙O的弦,將沿著弦AB折疊,正好經(jīng)過圓心O,點(diǎn)C是折疊后的上一動(dòng)點(diǎn),連接并延長(zhǎng)BC交⊙O于點(diǎn)D,點(diǎn)E是CD的中點(diǎn),連接AC,AD,EO.則下列結(jié)論:①∠ACB=120°,②△ACD是等邊三角形,③EO的最小值為1,其中正確的是_____.(請(qǐng)將正確答案的序號(hào)填在橫線上)14.化簡(jiǎn)的結(jié)果等于__.15.如圖,在四邊形ABCD中,AD∥BC,AB=CD且AB與CD不平行,AD=2,∠BCD=60°,對(duì)角線CA平分∠BCD,E,F(xiàn)分別是底邊AD,BC的中點(diǎn),連接EF,點(diǎn)P是EF上的任意一點(diǎn),連接PA,PB,則PA+PB的最小值為__.16.如果關(guān)于x的方程(m為常數(shù))有兩個(gè)相等實(shí)數(shù)根,那么m=______.三、解答題(共8題,共72分)17.(8分)如圖所示,在平面直角坐標(biāo)系xOy中,正方形OABC的邊長(zhǎng)為2cm,點(diǎn)A、C分別在y軸的負(fù)半軸和x軸的正半軸上,拋物線y=ax2+bx+c經(jīng)過點(diǎn)A、B和D(4,-2(1)求拋物線的表達(dá)式.(2)如果點(diǎn)P由點(diǎn)A出發(fā)沿AB邊以2cm/s的速度向點(diǎn)B運(yùn)動(dòng),同時(shí)點(diǎn)Q由點(diǎn)B出發(fā),沿BC邊以1cm/s的速度向點(diǎn)C運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)S=PQ2(cm2).①試求出S與運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系式,并寫出t的取值范圍;②當(dāng)S取54(3)在拋物線的對(duì)稱軸上求點(diǎn)M,使得M到D、A的距離之差最大,求出點(diǎn)M的坐標(biāo).18.(8分)如圖,點(diǎn)在的直徑的延長(zhǎng)線上,點(diǎn)在上,且AC=CD,∠ACD=120°.求證:是的切線;若的半徑為2,求圖中陰影部分的面積.19.(8分)如圖,以40m/s的速度將小球沿與地面成30°角的方向擊出時(shí),小球的飛行路線是一條拋物線.如果不考慮空氣阻力,小球的飛行高度h(單位:m)與飛行時(shí)間t(單位:s)之間具有函數(shù)關(guān)系h=10t﹣5t1.小球飛行時(shí)間是多少時(shí),小球最高?最大高度是多少?小球飛行時(shí)間t在什么范圍時(shí),飛行高度不低于15m?20.(8分)如圖,已知△ABC,按如下步驟作圖:①分別以A、C為圓心,以大于12②連接MN,分別交AB、AC于點(diǎn)D、O;③過C作CE∥AB交MN于點(diǎn)E,連接AE、CD.(1)求證:四邊形ADCE是菱形;(2)當(dāng)∠ACB=90°,BC=6,△ADC的周長(zhǎng)為18時(shí),求四邊形ADCE的面積.21.(8分)如圖,在平面直角坐標(biāo)系中,拋物線C1經(jīng)過點(diǎn)A(﹣4,0)、B(﹣1,0),其頂點(diǎn)為.(1)求拋物線C1的表達(dá)式;(2)將拋物線C1繞點(diǎn)B旋轉(zhuǎn)180°,得到拋物線C2,求拋物線C2的表達(dá)式;(3)再將拋物線C2沿x軸向右平移得到拋物線C3,設(shè)拋物線C3與x軸分別交于點(diǎn)E、F(E在F左側(cè)),頂點(diǎn)為G,連接AG、DF、AD、GF,若四邊形ADFG為矩形,求點(diǎn)E的坐標(biāo).22.(10分)小昆和小明玩摸牌游戲,游戲規(guī)則如下:有3張背面完全相同,牌面標(biāo)有數(shù)字1、2、3的紙牌,將紙牌洗勻后背面朝上放在桌面上,隨機(jī)抽出一張,記下牌面數(shù)字,放回后洗勻再隨機(jī)抽出一張.請(qǐng)用畫樹形圖或列表的方法(只選其中一種),表示出兩次抽出的紙牌數(shù)字可能出現(xiàn)的所有結(jié)果;若規(guī)定:兩次抽出的紙牌數(shù)字之和為奇數(shù),則小昆獲勝,兩次抽出的紙牌數(shù)字之和為偶數(shù),則小明獲勝,這個(gè)游戲公平嗎?為什么?23.(12分)如圖,已知在△ABC中,AB=AC=5,cosB=,P是邊AB上一點(diǎn),以P為圓心,PB為半徑的⊙P與邊BC的另一個(gè)交點(diǎn)為D,聯(lián)結(jié)PD、AD.(1)求△ABC的面積;(2)設(shè)PB=x,△APD的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;(3)如果△APD是直角三角形,求PB的長(zhǎng).24.如圖,在平面直角坐標(biāo)系中,拋物線y=-x2+bx+c與x軸交于點(diǎn)A(-1,0),點(diǎn)B(3,0),與y軸交于點(diǎn)C,線段BC與拋物線的對(duì)稱軸交于點(diǎn)E、P為線段BC上的一點(diǎn)(不與點(diǎn)B、C重合),過點(diǎn)P作PF∥y軸交拋物線于點(diǎn)F,連結(jié)DF.設(shè)點(diǎn)P的橫坐標(biāo)為m.(1)求此拋物線所對(duì)應(yīng)的函數(shù)表達(dá)式.(2)求PF的長(zhǎng)度,用含m的代數(shù)式表示.(3)當(dāng)四邊形PEDF為平行四邊形時(shí),求m的值.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
設(shè)交點(diǎn)式為y=-(x-m)(x-m+6),在把它配成頂點(diǎn)式得到y(tǒng)=-[x-(m-3)]2+1,則拋物線的頂點(diǎn)坐標(biāo)為(m-3,1),然后利用拋物線的平移可確定n的值.【詳解】設(shè)拋物線解析式為y=-(x-m)(x-m+6),∵y=-[x2-2(m-3)x+(m-3)2-1]=-[x-(m-3)]2+1,∴拋物線的頂點(diǎn)坐標(biāo)為(m-3,1),∴該函數(shù)圖象向下平移1個(gè)單位長(zhǎng)度時(shí)頂點(diǎn)落在x軸上,即拋物線與x軸有且只有一個(gè)交點(diǎn),即n=1.故選C.【點(diǎn)睛】本題考查了拋物線與x軸的交點(diǎn):把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點(diǎn)坐標(biāo)問題轉(zhuǎn)化為解關(guān)于x的一元二次方程.也考查了二次函數(shù)的性質(zhì).2、A【解析】
由于半圓的弧長(zhǎng)=圓錐的底面周長(zhǎng),那么圓錐的底面周長(zhǎng)為8π,底面半徑=8π÷2π.【詳解】解:由題意知:底面周長(zhǎng)=8π,∴底面半徑=8π÷2π=1.故選A.【點(diǎn)睛】此題主要考查了圓錐側(cè)面展開扇形與底面圓之間的關(guān)系,圓錐的側(cè)面展開圖是一個(gè)扇形,此扇形的弧長(zhǎng)等于圓錐底面周長(zhǎng),扇形的半徑等于圓錐的母線長(zhǎng),解決本題的關(guān)鍵是應(yīng)用半圓的弧長(zhǎng)=圓錐的底面周長(zhǎng).3、B【解析】由題意得,x-1≥0且x-3≠0,∴x≥1且x≠3.故選B.4、D【解析】
設(shè)y與x之間的函數(shù)關(guān)系式為y=kπx2,由待定系數(shù)法就可以求出解析式,再求出x=6時(shí)y的值即可得.【詳解】解:根據(jù)題意設(shè)y=kπx2,∵當(dāng)x=3時(shí),y=18,∴18=kπ?9,則k=,∴y=kπx2=?π?x2=2x2,當(dāng)x=6時(shí),y=2×36=72,故選:D.【點(diǎn)睛】本題考查了二次函數(shù)的應(yīng)用,解答時(shí)求出函數(shù)的解析式是關(guān)鍵.5、A【解析】試題分析:根據(jù)多邊形的外角和是310°,即可求得多邊形的內(nèi)角的度數(shù)為720°,依據(jù)多邊形的內(nèi)角和公式列方程即可得(n﹣2)180°=720°,解得:n=1.故選A.考點(diǎn):多邊形的內(nèi)角和定理以及多邊形的外角和定理6、C【解析】
根據(jù)三角形的中位線定理可得DE∥BC,=,即可證得△ADE∽△ABC,根據(jù)相似三角形面積的比等于相似比的平方可得=,已知△ADE的面積為1,即可求得S△ABC=1.【詳解】∵D、E分別是AB、AC的中點(diǎn),∴DE是△ABC的中位線,∴DE∥BC,=,∴△ADE∽△ABC,∴=()2=,∵△ADE的面積為1,∴S△ABC=1.故選C.【點(diǎn)睛】本題考查了三角形的中位線定理及相似三角形的判定與性質(zhì),先證得△ADE∽△ABC,根據(jù)相似三角形面積的比等于相似比的平方得到=是解決問題的關(guān)鍵.7、A【解析】解:∵,∴反比例函數(shù)的圖象位于第二、四象限,在每個(gè)象限內(nèi),y隨x的增大而增大,∵點(diǎn)A(2,a)、B(3,b)在反比例函數(shù)的圖象上,∴a<b<0,故選A.8、B【解析】試題解析:在菱形中,,,所以,,在中,,因?yàn)椋?,則,在中,由勾股定理得,,由可得,,即,所以.故選B.9、D【解析】
根據(jù)全等三角形的性質(zhì)可知A,B,C命題均正確,故選項(xiàng)均錯(cuò)誤;D.錯(cuò)誤,全等三角也可能是直角三角,故選項(xiàng)正確.故選D.【點(diǎn)睛】本題考查全等三角形的性質(zhì),兩三角形全等,其對(duì)應(yīng)邊和對(duì)應(yīng)角都相等.10、D【解析】
用科學(xué)記數(shù)法表示較大的數(shù)時(shí),一般形式為a×10﹣n,其中1≤|a|<10,n為整數(shù),據(jù)此判斷即可【詳解】28600=2.86×1.故選D.【點(diǎn)睛】此題主要考查了用科學(xué)記數(shù)法表示較大的數(shù),一般形式為a×10﹣n,其中1≤|a|<10,確定a與n的值是解題的關(guān)鍵二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、1【解析】
根據(jù)中位數(shù)的定義,結(jié)合圖表信息解答即可.【詳解】將這八位女生的體重重新排列為:35、36、38、38、40、42、42、45,則這八位女生的體重的中位數(shù)為=1kg,故答案為1.【點(diǎn)睛】本題考查了中位數(shù),確定中位數(shù)的時(shí)候一定要先排好順序,然后再根據(jù)個(gè)數(shù)是奇數(shù)或偶數(shù)來確定中位數(shù),如果數(shù)據(jù)有奇數(shù)個(gè),則正中間的數(shù)字即為所求,如果是偶數(shù)個(gè)則找中間兩位數(shù)的平均數(shù),中位數(shù)有時(shí)不一定是這組數(shù)據(jù)的數(shù).12、y1<y1【解析】分析:根據(jù)反比例函數(shù)的性質(zhì)和題目中的函數(shù)解析式可以判斷y1與y1的大小,從而可以解答本題.詳解:∵反比例函數(shù)y=-,-4<0,∴在每個(gè)象限內(nèi),y隨x的增大而增大,∵A(-4,y1),B(-1,y1)是反比例函數(shù)y=-圖象上的兩個(gè)點(diǎn),-4<-1,∴y1<y1,故答案為:y1<y1.點(diǎn)睛:本題考查反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,解答本題的關(guān)鍵是明確反比例函數(shù)的性質(zhì),利用函數(shù)的思想解答.13、①②【解析】
根據(jù)折疊的性質(zhì)可知,結(jié)合垂徑定理、三角形的性質(zhì)、同圓或等圓中圓周角與圓心的性質(zhì)等可以判斷①②是否正確,EO的最小值問題是個(gè)難點(diǎn),這是一個(gè)動(dòng)點(diǎn)問題,只要把握住E在什么軌跡上運(yùn)動(dòng),便可解決問題.【詳解】如圖1,連接OA和OB,作OF⊥AB.
由題知:沿著弦AB折疊,正好經(jīng)過圓心O
∴OF=OA=OB
∴∠AOF=∠BOF=60°
∴∠AOB=120°
∴∠ACB=120°(同弧所對(duì)圓周角相等)
∠D=∠AOB=60°(同弧所對(duì)的圓周角是圓心角的一半)
∴∠ACD=180°-∠ACB=60°
∴△ACD是等邊三角形(有兩個(gè)角是60°的三角形是等邊三角形)
故,①②正確
下面研究問題EO的最小值是否是1
如圖2,連接AE和EF
∵△ACD是等邊三角形,E是CD中點(diǎn)
∴AE⊥BD(三線合一)
又∵OF⊥AB
∴F是AB中點(diǎn)
即,EF是△ABE斜邊中線
∴AF=EF=BF
即,E點(diǎn)在以AB為直徑的圓上運(yùn)動(dòng).
所以,如圖3,當(dāng)E、O、F在同一直線時(shí),OE長(zhǎng)度最小
此時(shí),AE=EF,AE⊥EF
∵⊙O的半徑是2,即OA=2,OF=1
∴AF=(勾股定理)
∴OE=EF-OF=AF-OF=-1
所以,③不正確
綜上所述:①②正確,③不正確.
故答案是:①②.【點(diǎn)睛】考查了圓周角定理:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半.推論:半圓(或直徑)所對(duì)的圓周角是直角,90°的圓周角所對(duì)的弦是直徑.也考查了垂徑定理.14、.【解析】
先通分變?yōu)橥帜阜质?,然后根?jù)分式的減法法則計(jì)算即可.【詳解】解:原式.故答案為:.【點(diǎn)睛】此題考查的是分式的減法,掌握分式的減法法則是解決此題的關(guān)鍵.15、2【解析】
將PA+PB轉(zhuǎn)化為PA+PC的值即可求出最小值.【詳解】解:E,F分別是底邊AD,BC的中點(diǎn),四邊形ABCD是等腰梯形,B點(diǎn)關(guān)于EF的對(duì)稱點(diǎn)C點(diǎn),AC即為PA+PB的最小值,∠BCD=,對(duì)角線AC平分∠BCD,∠ABC=,ZBCA=,∠BAC=,AD=2,PA+PB的最小值=.故答案為:.【點(diǎn)睛】求PA+PB的最小值,PA+PB不能直接求,可考慮轉(zhuǎn)化PA+PC的值,從而找出其最小值求解.16、1【解析】析:本題需先根據(jù)已知條件列出關(guān)于m的等式,即可求出m的值.解答:解:∵x的方程x2-2x+m=0(m為常數(shù))有兩個(gè)相等實(shí)數(shù)根∴△=b2-4ac=(-2)2-4×1?m=04-4m=0m=1故答案為1三、解答題(共8題,共72分)17、(1)拋物線的解析式為:y=1(2)①S與運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系式是S=5t2﹣8t+4,t的取值范圍是0≤t≤1;②存在.R點(diǎn)的坐標(biāo)是(3,﹣32(3)M的坐標(biāo)為(1,﹣83【解析】試題分析:(1)設(shè)拋物線的解析式是y=ax2+bx+c,求出A、B、D的坐標(biāo)代入即可;(2)①由勾股定理即可求出;②假設(shè)存在點(diǎn)R,可構(gòu)成以P、B、R、Q為頂點(diǎn)的平行四邊形,求出P、Q的坐標(biāo),再分為兩種種情況:A、B、C即可根據(jù)平行四邊形的性質(zhì)求出R的坐標(biāo);(3)A關(guān)于拋物線的對(duì)稱軸的對(duì)稱點(diǎn)為B,過B、D的直線與拋物線的對(duì)稱軸的交點(diǎn)為所求M,求出直線BD的解析式,把拋物線的對(duì)稱軸x=1代入即可求出M的坐標(biāo).試題解析:(1)設(shè)拋物線的解析式是y=ax2+bx+c,∵正方形的邊長(zhǎng)2,∴B的坐標(biāo)(2,﹣2)A點(diǎn)的坐標(biāo)是(0,﹣2),把A(0,﹣2),B(2,﹣2),D(4,﹣23)代入得:c=-2解得a=16,b=﹣1∴拋物線的解析式為:y=1答:拋物線的解析式為:y=1(2)①由圖象知:PB=2﹣2t,BQ=t,∴S=PQ2=PB2+BQ2,=(2﹣2t)2+t2,即S=5t2﹣8t+4(0≤t≤1).答:S與運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系式是S=5t2﹣8t+4,t的取值范圍是0≤t≤1;②假設(shè)存在點(diǎn)R,可構(gòu)成以P、B、R、Q為頂點(diǎn)的平行四邊形.∵S=5t2﹣8t+4(0≤t≤1),∴當(dāng)S=54時(shí),5t2﹣8t+4=54,得20t解得t=12,t=11此時(shí)點(diǎn)P的坐標(biāo)為(1,﹣2),Q點(diǎn)的坐標(biāo)為(2,﹣32若R點(diǎn)存在,分情況討論:(i)假設(shè)R在BQ的右邊,如圖所示,這時(shí)QR=PB,RQ∥PB,則R的橫坐標(biāo)為3,R的縱坐標(biāo)為﹣32即R(3,﹣32代入y=1∴這時(shí)存在R(3,﹣32(ii)假設(shè)R在QB的左邊時(shí),這時(shí)PR=QB,PR∥QB,則R(1,﹣32)代入,y=左右不相等,∴R不在拋物線上.(1分)綜上所述,存點(diǎn)一點(diǎn)R(3,﹣32答:存在,R點(diǎn)的坐標(biāo)是(3,﹣32(3)如圖,M′B=M′A,∵A關(guān)于拋物線的對(duì)稱軸的對(duì)稱點(diǎn)為B,過B、D的直線與拋物線的對(duì)稱軸的交點(diǎn)為所求M,理由是:∵M(jìn)A=MB,若M不為L(zhǎng)與DB的交點(diǎn),則三點(diǎn)B、M、D構(gòu)成三角形,∴|MB|﹣|MD|<|DB|,即M到D、A的距離之差為|DB|時(shí),差值最大,設(shè)直線BD的解析式是y=kx+b,把B、D的坐標(biāo)代入得:,解得:k=23,b=﹣10∴y=23x﹣10拋物線y=1把x=1代入得:y=﹣8∴M的坐標(biāo)為(1,﹣83答:M的坐標(biāo)為(1,﹣83考點(diǎn):二次函數(shù)綜合題.18、(1)見解析(2)圖中陰影部分的面積為π.【解析】
(1)連接OC.只需證明∠OCD=90°.根據(jù)等腰三角形的性質(zhì)即可證明;(2)先根據(jù)直角三角形中30°的銳角所對(duì)的直角邊是斜邊的一半求出OD,然后根據(jù)勾股定理求出CD,則陰影部分的面積即為直角三角形OCD的面積減去扇形COB的面積.【詳解】(1)證明:連接OC.∵AC=CD,∠ACD=120°,∴∠A=∠D=30°.∵OA=OC,∴∠2=∠A=30°.∴∠OCD=∠ACD-∠2=90°,即OC⊥CD,∴CD是⊙O的切線;(2)解:∠1=∠2+∠A=60°.∴S扇形BOC==.在Rt△OCD中,∠D=30°,∴OD=2OC=4,∴CD==.∴SRt△OCD=OC×CD=×2×=.∴圖中陰影部分的面積為:-.19、(1)小球飛行時(shí)間是1s時(shí),小球最高為10m;(1)1≤t≤3.【解析】
(1)將函數(shù)解析式配方成頂點(diǎn)式可得最值;(1)畫圖象可得t的取值.【詳解】(1)∵h(yuǎn)=﹣5t1+10t=﹣5(t﹣1)1+10,∴當(dāng)t=1時(shí),h取得最大值10米;答:小球飛行時(shí)間是1s時(shí),小球最高為10m;(1)如圖,由題意得:15=10t﹣5t1,解得:t1=1,t1=3,由圖象得:當(dāng)1≤t≤3時(shí),h≥15,則小球飛行時(shí)間1≤t≤3時(shí),飛行高度不低于15m.【點(diǎn)睛】本題考查了二次函數(shù)的應(yīng)用,主要考查了二次函數(shù)的最值問題,以及利用二次函數(shù)圖象求不等式,并熟練掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.20、(1)詳見解析;(2)1.【解析】
(1)利用直線DE是線段AC的垂直平分線,得出AC⊥DE,即∠AOD=∠COE=90°,從而得出△AOD≌△COE,即可得出四邊形ADCE是菱形.
(2)利用當(dāng)∠ACB=90°時(shí),OD∥BC,即有△ADO∽△ABC,即可由相似三角形的性質(zhì)和勾股定理得出OD和AO的長(zhǎng),即根據(jù)菱形的性質(zhì)得出四邊形ADCE的面積.【詳解】(1)證明:由題意可知:∵分別以A、C為圓心,以大于12∴直線DE是線段AC的垂直平分線,∴AC⊥DE,即∠AOD=∠COE=90°;且AD=CD、AO=CO,又∵CE∥AB,∴∠1=∠2,在△AOD和△COE中∠1=∠2∠AOD=∠COE=∴△AOD≌△COE(AAS),∴OD=OE,∵A0=CO,DO=EO,∴四邊形ADCE是平行四邊形,又∵AC⊥DE,∴四邊形ADCE是菱形;(2)解:當(dāng)∠ACB=90°時(shí),OD∥BC,即有△ADO∽△ABC,∴ODBC又∵BC=6,∴OD=3,又∵△ADC的周長(zhǎng)為18,∴AD+AO=9,即AD=9﹣AO,∴OD=A可得AO=4,∴DE=6,AC=8,∴S=1【點(diǎn)睛】考查線段垂直平分線的性質(zhì),菱形的判定,相似三角形的判定與性質(zhì)等,綜合性比較強(qiáng).21、(1)y;(2);(3)E(,0).【解析】
(1)根據(jù)拋物線C1的頂點(diǎn)坐標(biāo)可設(shè)頂點(diǎn)式將點(diǎn)B坐標(biāo)代入求解即可;(2)由拋物線C1繞點(diǎn)B旋轉(zhuǎn)180°得到拋物線C2知拋物線C2的頂點(diǎn)坐標(biāo),可設(shè)拋物線C2的頂點(diǎn)式,根據(jù)旋轉(zhuǎn)后拋物線C2開口朝下,且形狀不變即可確定其表達(dá)式;(3)作GK⊥x軸于G,DH⊥AB于H,由題意GK=DH=3,AH=HB=EK=KF,結(jié)合矩形的性質(zhì)利用兩組對(duì)應(yīng)角分別相等的兩個(gè)三角形相似可證△AGK∽△GFK,由其對(duì)應(yīng)線段成比例的性質(zhì)可知AK長(zhǎng),結(jié)合A、B點(diǎn)坐標(biāo)可知BK、BE、OE長(zhǎng),可得點(diǎn)E坐標(biāo).【詳解】解:(1)∵拋物線C1的頂點(diǎn)為,∴可設(shè)拋物線C1的表達(dá)式為y,將B(﹣1,0)代入拋物線解析式得:,∴,解得:a,∴拋物線C1的表達(dá)式為y,即y.(2)設(shè)拋物線C2的頂點(diǎn)坐標(biāo)為∵拋物線C1繞點(diǎn)B旋轉(zhuǎn)180°,得到拋物線C2,即點(diǎn)與點(diǎn)關(guān)于點(diǎn)B(﹣1,0)對(duì)稱∴拋物線C2的頂點(diǎn)坐標(biāo)為()可設(shè)拋物線C2的表達(dá)式為y∵拋物線C2開口朝下,且形狀不變∴拋物線C2的表達(dá)式為y,即.(3)如圖,作GK⊥x軸于G,DH⊥AB于H.由題意GK=DH=3,AH=HB=EK=KF,∵四邊形AGFD是矩形,∴∠AGF=∠GKF=90°,∴∠AGK+∠KGF=90°,∠KGF+∠GFK=90°,∴∠AGK=∠GFK.∵∠AKG=∠FKG=90°,∴△AGK∽△GFK,∴,∴,∴AK=6,,∴BE=BK﹣EK=3,∴OE,∴E(,0).【點(diǎn)睛】本題考查了二次函數(shù)與幾何的綜合,涉及了待定系數(shù)法求二次函數(shù)解析式、矩形的性質(zhì)、相似三角形的判定和性質(zhì)、旋轉(zhuǎn)變換的性質(zhì),靈活的利用待定系數(shù)法求二次函數(shù)解析式是解前兩問的關(guān)鍵,熟練掌握相似三角形的判定與性質(zhì)是解(3)的關(guān)鍵.22、(1)結(jié)果見解析;(2)不公平,理由見解析.【解析】判斷游戲是否公平,即是看雙方取勝的概率是否相同,若相同,則公平,不相同則不公平.23、(1)12(2)y=(0<x<5)(3)或【解析】試題分析:(1)過點(diǎn)A作AH⊥BC于點(diǎn)H,根據(jù)cosB=求得BH的長(zhǎng),從而根據(jù)已知可求得AH的長(zhǎng),BC的長(zhǎng),再利用三角形的面積公式即可得;(2)先證明△BPD∽△BAC,得到=,再根據(jù),代入相關(guān)的量即可得;(3)分情況進(jìn)行討論即可得.試題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學(xué)五年綜合發(fā)展規(guī)劃(2020.9-2025.8)
- 菱形網(wǎng)格護(hù)坡施工方案
- 2024年渤海理工職業(yè)學(xué)院高職單招職業(yè)適應(yīng)性測(cè)試歷年參考題庫含答案解析
- 醫(yī)院會(huì)計(jì)核算和財(cái)務(wù)管理相關(guān)問題探討培訓(xùn)講學(xué)
- 二零二五年環(huán)保設(shè)施建設(shè)合同作廢聲明模板3篇
- 6年級(jí)英語上滬教版
- Module3Unit9DinnerisreadyPeriod1(課件)-滬教牛津版(深圳用)英語二年級(jí)上冊(cè)
- (完整版)監(jiān)控?cái)z像頭安裝安全技術(shù)交底
- 東南大學(xué)-區(qū)域經(jīng)濟(jì)學(xué)課件(2013-9-21)
- 2025版4A級(jí)旅游景區(qū)門票銷售合作協(xié)議3篇
- 2024-2025學(xué)年高考英語語法第一輪復(fù)習(xí):定語從句(講義)(原卷版+解析)
- DB35T 2082-2022 人民防空疏散基地建設(shè)基本要求
- 瑞士萬通831KF卡爾費(fèi)休水分測(cè)定儀干貨-庫侖法
- 第14章第1節(jié)熱機(jī)-課件(共21張課件)-人教版初中物理九年級(jí)全一冊(cè).課件
- 四年級(jí)數(shù)學(xué)(上)計(jì)算題專項(xiàng)練習(xí)及答案匯編
- 廣東省廣州市(2024年-2025年小學(xué)四年級(jí)語文)人教版期末考試(上學(xué)期)試卷及答案
- 23-燃?xì)赓|(zhì)量檢測(cè)制度
- 《火災(zāi)調(diào)查 第2版》 課件全套 劉玲 第1-12章 緒論、詢問 -火災(zāi)物證鑒定
- 借用他人名義買車協(xié)議完整版
- 校園超市經(jīng)營(yíng)投標(biāo)方案(技術(shù)方案)
- 基于Web服務(wù)的辦公系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)的開題報(bào)告
評(píng)論
0/150
提交評(píng)論