版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
山東省蒙陰縣第一中學(xué)2023-2024學(xué)年高考仿真卷數(shù)學(xué)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知集合,集合,則A. B.或C. D.2.已知函數(shù),,且,則()A.3 B.3或7 C.5 D.5或83.函數(shù)圖象的大致形狀是()A. B.C. D.4.某學(xué)校組織學(xué)生參加英語測(cè)試,成績(jī)的頻率分布直方圖如圖,數(shù)據(jù)的分組依次為,若低于60分的人數(shù)是18人,則該班的學(xué)生人數(shù)是()A.45 B.50 C.55 D.605.已知雙曲線的離心率為,拋物線的焦點(diǎn)坐標(biāo)為,若,則雙曲線的漸近線方程為()A. B.C. D.6.下列與的終邊相同的角的表達(dá)式中正確的是()A.2kπ+45°(k∈Z) B.k·360°+π(k∈Z)C.k·360°-315°(k∈Z) D.kπ+(k∈Z)7.馬林●梅森是17世紀(jì)法國(guó)著名的數(shù)學(xué)家和修道士,也是當(dāng)時(shí)歐洲科學(xué)界一位獨(dú)特的中心人物,梅森在歐幾里得、費(fèi)馬等人研究的基礎(chǔ)上對(duì)2p﹣1作了大量的計(jì)算、驗(yàn)證工作,人們?yōu)榱思o(jì)念梅森在數(shù)論方面的這一貢獻(xiàn),將形如2P﹣1(其中p是素?cái)?shù))的素?cái)?shù),稱為梅森素?cái)?shù).若執(zhí)行如圖所示的程序框圖,則輸出的梅森素?cái)?shù)的個(gè)數(shù)是()A.3 B.4 C.5 D.68.已知i為虛數(shù)單位,則()A. B. C. D.9.已知復(fù)數(shù)滿足,(為虛數(shù)單位),則()A. B. C. D.310.已知的值域?yàn)?,?dāng)正數(shù)a,b滿足時(shí),則的最小值為()A. B.5 C. D.911.已知函數(shù),若,則的值等于()A. B. C. D.12.如圖所示的程序框圖,當(dāng)其運(yùn)行結(jié)果為31時(shí),則圖中判斷框①處應(yīng)填入的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知關(guān)于空間兩條不同直線m、n,兩個(gè)不同平面、,有下列四個(gè)命題:①若且,則;②若且,則;③若且,則;④若,且,則.其中正確命題的序號(hào)為______.14.如圖,為測(cè)量出高,選擇和另一座山的山頂為測(cè)量觀測(cè)點(diǎn),從點(diǎn)測(cè)得點(diǎn)的仰角,點(diǎn)的仰角以及;從點(diǎn)測(cè)得.已知山高,則山高_(dá)_________.15.函數(shù)的圖像如圖所示,則該函數(shù)的最小正周期為________.16.已知,,,,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,角A、B、C的對(duì)邊分別為a、b、c,且.(1)求角A的大?。唬?)若,的平分線與交于點(diǎn)D,與的外接圓交于點(diǎn)E(異于點(diǎn)A),,求的值.18.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為,(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(Ⅰ)求的極坐標(biāo)方程和的直角坐標(biāo)方程;(Ⅱ)設(shè)分別交于兩點(diǎn)(與原點(diǎn)不重合),求的最小值.19.(12分)如圖,點(diǎn)是以為直徑的圓上異于、的一點(diǎn),直角梯形所在平面與圓所在平面垂直,且,.(1)證明:平面;(2)求點(diǎn)到平面的距離.20.(12分)如圖,四棱錐中,平面平面,底面為梯形.,且與均為正三角形.為的中點(diǎn)為重心,與相交于點(diǎn).(1)求證:平面;(2)求三棱錐的體積.21.(12分)在創(chuàng)建“全國(guó)文明衛(wèi)生城”過程中,運(yùn)城市“創(chuàng)城辦”為了調(diào)查市民對(duì)創(chuàng)城工作的了解情況,進(jìn)行了一次創(chuàng)城知識(shí)問卷調(diào)查(一位市民只能參加一次),通過隨機(jī)抽樣,得到參加問卷調(diào)查的人的得分統(tǒng)計(jì)結(jié)果如表所示:.組別頻數(shù)(1)由頻數(shù)分布表可以大致認(rèn)為,此次問卷調(diào)查的得分似為這人得分的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表),利用該正態(tài)分布,求;(2)在(1)的條件下,“創(chuàng)城辦”為此次參加問卷調(diào)查的市民制定如下獎(jiǎng)勵(lì)方案:①得分不低于的可以獲贈(zèng)次隨機(jī)話費(fèi),得分低于的可以獲贈(zèng)次隨機(jī)話費(fèi);②每次獲贈(zèng)的隨機(jī)話費(fèi)和對(duì)應(yīng)的概率為:贈(zèng)送話費(fèi)的金額(單位:元)概率現(xiàn)有市民甲參加此次問卷調(diào)查,記(單位:元)為該市民參加問卷調(diào)查獲贈(zèng)的話費(fèi),求的分布列與數(shù)學(xué)期望.附:參考數(shù)據(jù)與公式:,若,則,,22.(10分)在數(shù)列中,,(1)求數(shù)列的通項(xiàng)公式;(2)若存在,使得成立,求實(shí)數(shù)的最小值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
由可得,解得或,所以或,又,所以,故選C.2、B【解析】
根據(jù)函數(shù)的對(duì)稱軸以及函數(shù)值,可得結(jié)果.【詳解】函數(shù),若,則的圖象關(guān)于對(duì)稱,又,所以或,所以的值是7或3.故選:B.【點(diǎn)睛】本題考查的是三角函數(shù)的概念及性質(zhì)和函數(shù)的對(duì)稱性問題,屬基礎(chǔ)題3、B【解析】
判斷函數(shù)的奇偶性,可排除A、C,再判斷函數(shù)在區(qū)間上函數(shù)值與的大小,即可得出答案.【詳解】解:因?yàn)?,所以,所以函?shù)是奇函數(shù),可排除A、C;又當(dāng),,可排除D;故選:B.【點(diǎn)睛】本題考查函數(shù)表達(dá)式判斷函數(shù)圖像,屬于中檔題.4、D【解析】
根據(jù)頻率分布直方圖中頻率=小矩形的高×組距計(jì)算成績(jī)低于60分的頻率,再根據(jù)樣本容量求出班級(jí)人數(shù).【詳解】根據(jù)頻率分布直方圖,得:低于60分的頻率是(0.005+0.010)×20=0.30,∴樣本容量(即該班的學(xué)生人數(shù))是60(人).故選:D.【點(diǎn)睛】本題考查了頻率分布直方圖的應(yīng)用問題,也考查了頻率的應(yīng)用問題,屬于基礎(chǔ)題5、A【解析】
求出拋物線的焦點(diǎn)坐標(biāo),得到雙曲線的離心率,然后求解a,b關(guān)系,即可得到雙曲線的漸近線方程.【詳解】拋物線y2=2px(p>0)的焦點(diǎn)坐標(biāo)為(1,0),則p=2,又e=p,所以e2,可得c2=4a2=a2+b2,可得:ba,所以雙曲線的漸近線方程為:y=±.故選:A.【點(diǎn)睛】本題考查雙曲線的離心率以及雙曲線漸近線方程的求法,涉及拋物線的簡(jiǎn)單性質(zhì)的應(yīng)用.6、C【解析】
利用終邊相同的角的公式判斷即得正確答案.【詳解】與的終邊相同的角可以寫成2kπ+(k∈Z),但是角度制與弧度制不能混用,所以只有答案C正確.故答案為C【點(diǎn)睛】(1)本題主要考查終邊相同的角的公式,意在考查學(xué)生對(duì)該知識(shí)的掌握水平和分析推理能力.(2)與終邊相同的角=+其中.7、C【解析】
模擬程序的運(yùn)行即可求出答案.【詳解】解:模擬程序的運(yùn)行,可得:p=1,S=1,輸出S的值為1,滿足條件p≤7,執(zhí)行循環(huán)體,p=3,S=7,輸出S的值為7,滿足條件p≤7,執(zhí)行循環(huán)體,p=5,S=31,輸出S的值為31,滿足條件p≤7,執(zhí)行循環(huán)體,p=7,S=127,輸出S的值為127,滿足條件p≤7,執(zhí)行循環(huán)體,p=9,S=511,輸出S的值為511,此時(shí),不滿足條件p≤7,退出循環(huán),結(jié)束,故若執(zhí)行如圖所示的程序框圖,則輸出的梅森素?cái)?shù)的個(gè)數(shù)是5,故選:C.【點(diǎn)睛】本題主要考查程序框圖,屬于基礎(chǔ)題.8、A【解析】
根據(jù)復(fù)數(shù)乘除運(yùn)算法則,即可求解.【詳解】.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)運(yùn)算,屬于基礎(chǔ)題題.9、A【解析】,故,故選A.10、A【解析】
利用的值域?yàn)?求出m,再變形,利用1的代換,即可求出的最小值.【詳解】解:∵的值域?yàn)?∴,∴,∴,當(dāng)且僅當(dāng)時(shí)取等號(hào),∴的最小值為.故選:A.【點(diǎn)睛】本題主要考查了對(duì)數(shù)復(fù)合函數(shù)的值域運(yùn)用,同時(shí)也考查了基本不等式中“1的運(yùn)用”,屬于中檔題.11、B【解析】
由函數(shù)的奇偶性可得,【詳解】∵其中為奇函數(shù),也為奇函數(shù)∴也為奇函數(shù)∴故選:B【點(diǎn)睛】函數(shù)奇偶性的運(yùn)用即得結(jié)果,小記,定義域關(guān)于原點(diǎn)對(duì)稱時(shí)有:①奇函數(shù)±奇函數(shù)=奇函數(shù);②奇函數(shù)×奇函數(shù)=偶函數(shù);③奇函數(shù)÷奇函數(shù)=偶函數(shù);④偶函數(shù)±偶函數(shù)=偶函數(shù);⑤偶函數(shù)×偶函數(shù)=偶函數(shù);⑥奇函數(shù)×偶函數(shù)=奇函數(shù);⑦奇函數(shù)÷偶函數(shù)=奇函數(shù)12、C【解析】
根據(jù)程序框圖的運(yùn)行,循環(huán)算出當(dāng)時(shí),結(jié)束運(yùn)行,總結(jié)分析即可得出答案.【詳解】由題可知,程序框圖的運(yùn)行結(jié)果為31,當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),.此時(shí)輸出.故選:C.【點(diǎn)睛】本題考查根據(jù)程序框圖的循環(huán)結(jié)構(gòu),已知輸出結(jié)果求條件框,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、③④【解析】
由直線與直線的位置關(guān)系,直線與平面的位置關(guān)系,面面垂直的判定定理和線面垂直的定義判斷.【詳解】①若且,的位置關(guān)系是平行、相交或異面,①錯(cuò);②若且,則或者,②錯(cuò);③若,設(shè)過的平面與交于直線,則,又,則,∴,③正確;④若,且,由線面垂直的定義知,④正確.故答案為:③④.【點(diǎn)睛】本題考查直線與直線的位置關(guān)系,直線與平面的位置關(guān)系,面面垂直的判定定理和線面垂直的定義,考查空間線面間的位置關(guān)系,掌握空間線線、線面、面面位置關(guān)系是解題基礎(chǔ).14、1【解析】試題分析:在中,,,在中,由正弦定理可得即解得,在中,.故答案為1.考點(diǎn):正弦定理的應(yīng)用.15、【解析】
根據(jù)圖象利用,先求出的值,結(jié)合求出,然后利用周期公式進(jìn)行求解即可.【詳解】解:由,得,,,則,,,即,則函數(shù)的最小正周期,故答案為:8【點(diǎn)睛】本題主要考查三角函數(shù)周期的求解,結(jié)合圖象求出函數(shù)的解析式是解決本題的關(guān)鍵.16、【解析】
由已知利用同角三角函數(shù)的基本關(guān)系式可求得,的值,由兩角差的正弦公式即可計(jì)算得的值.【詳解】,,,,,,,,.故答案為:【點(diǎn)睛】本題主要考查了同角三角函數(shù)的基本關(guān)系、兩角差的正弦公式,需熟記公式,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)由,利用正弦定理轉(zhuǎn)化整理為,再利用余弦定理求解.(2)根據(jù),利用兩角和的余弦得到,利用數(shù)形結(jié)合,設(shè),在中,由正弦定理求得,在中,求得再求解.【詳解】(1)因?yàn)椋?,即,即,所?(2)∵,.所以,從而.所以,.不妨設(shè),O為外接圓圓心則AO=1,,.在中,由正弦定理知,有.即;在中,由,,從而.所以.【點(diǎn)睛】本題主要考查平面向量的模的幾何意義,還考查了數(shù)形結(jié)合的方法,屬于中檔題.18、(Ⅰ)直線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為,的直角坐標(biāo)方程為;(Ⅱ)2.【解析】
(Ⅰ)由定義可直接寫出直線的極坐標(biāo)方程,對(duì)曲線同乘可得:,轉(zhuǎn)化成直角坐標(biāo)為;(Ⅱ)分別聯(lián)立兩直線和曲線的方程,由得,由得,則,結(jié)合三角函數(shù)即可求解;【詳解】(Ⅰ)直線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為由曲線的極坐標(biāo)方程得,所以的直角坐標(biāo)方程為.(Ⅱ)與的極坐標(biāo)方程聯(lián)立得所以.與的極坐標(biāo)方程聯(lián)立得所以.所以.所以當(dāng)時(shí),取最小值2.【點(diǎn)睛】本題考查參數(shù)方程與極坐標(biāo)方程的互化,極坐標(biāo)方程與直角坐標(biāo)方程的互化,極坐標(biāo)中的幾何意義,屬于中檔題19、(1)見解析;(2)【解析】
(1)取的中點(diǎn),證明,則平面平面,則可證平面.(2)利用,是平面的高,容易求.,再求,則點(diǎn)到平面的距離可求.【詳解】解:(1)如圖:取的中點(diǎn),連接、.在中,是的中點(diǎn),是的中點(diǎn),平面平面,故平面在直角梯形中,,且,∴四邊形是平行四邊形,,同理平面又,故平面平面,又平面平面.(2)是圓的直徑,點(diǎn)是圓上異于、的一點(diǎn),又∵平面平面,平面平面平面,可得是三棱錐的高線.在直角梯形中,.設(shè)到平面的距離為,則,即由已知得,由余弦定理易知:,則解得,即點(diǎn)到平面的距離為故答案為:.【點(diǎn)睛】考查線面平行的判定和利用等體積法求距離的方法,是中檔題.20、(1)見解析(2)【解析】
(1)第(1)問,連交于,連接.證明//,即證平面.(2)第(2)問,主要是利用體積變換,,求得三棱錐的體積.【詳解】(1)方法一:連交于,連接.由梯形,且,知又為的中點(diǎn),為的重心,∴在中,,故//.又平面,平面,∴平面.方法二:過作交PD于N,過F作FM||AD交CD于M,連接MN,G為△PAD的重心,又ABCD為梯形,AB||CD,又由所作GN||AD,FM||AD,得//,所以GNMF為平行四邊形.因?yàn)镚F||MN,(2)方法一:由平面平面,與均為正三角形,為的中點(diǎn)∴,,得平面,且由(1)知//平面,∴又由梯形ABCD,AB||CD,且,知又為正三角形,得,∴,得∴三棱錐的體積為.方法二:由平面平面,與均為正三角形,為的中點(diǎn)∴,,得平面,且由,∴而又為正三角形,得,得.∴,∴三棱錐的體積為.21、(1)(2)詳見解析【解析】
由題意,根據(jù)平均數(shù)公式求得,再根據(jù),參照數(shù)據(jù)求解.由題意得,獲贈(zèng)話費(fèi)的可能
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年智能防盜門安裝與系統(tǒng)集成服務(wù)協(xié)議3篇
- 2024技術(shù)支持協(xié)議書范本
- 2024版聘用合同勞動(dòng)合同
- 2025年度苯板銷售與產(chǎn)業(yè)鏈整合合同2篇
- 二零二五年度環(huán)保型廣告車租賃服務(wù)協(xié)議6篇
- 2024延期支付科研經(jīng)費(fèi)合同協(xié)議書3篇
- 2024昆明市二手房買賣合同及其空氣質(zhì)量保證協(xié)議
- 二零二五年金融衍生品交易合同公證協(xié)議3篇
- 二零二五年度賓館客房租賃合同解除協(xié)議2篇
- 武漢信息傳播職業(yè)技術(shù)學(xué)院《空間數(shù)據(jù)庫》2023-2024學(xué)年第一學(xué)期期末試卷
- 常用靜脈藥物溶媒的選擇
- 當(dāng)代西方文學(xué)理論知到智慧樹章節(jié)測(cè)試課后答案2024年秋武漢科技大學(xué)
- 2024年預(yù)制混凝土制品購銷協(xié)議3篇
- 2024-2030年中國(guó)高端私人會(huì)所市場(chǎng)競(jìng)爭(zhēng)格局及投資經(jīng)營(yíng)管理分析報(bào)告
- GA/T 1003-2024銀行自助服務(wù)亭技術(shù)規(guī)范
- 《消防設(shè)備操作使用》培訓(xùn)
- 新交際英語(2024)一年級(jí)上冊(cè)Unit 1~6全冊(cè)教案
- 2024年度跨境電商平臺(tái)運(yùn)營(yíng)與孵化合同
- 2024年電動(dòng)汽車充電消費(fèi)者研究報(bào)告-2024-11-新能源
- 湖北省黃岡高級(jí)中學(xué)2025屆物理高一第一學(xué)期期末考試試題含解析
- 上海市徐匯中學(xué)2025屆物理高一第一學(xué)期期末學(xué)業(yè)水平測(cè)試試題含解析
評(píng)論
0/150
提交評(píng)論