2024屆蘇錫常鎮(zhèn)四市高三最后一模數(shù)學(xué)試題含解析_第1頁(yè)
2024屆蘇錫常鎮(zhèn)四市高三最后一模數(shù)學(xué)試題含解析_第2頁(yè)
2024屆蘇錫常鎮(zhèn)四市高三最后一模數(shù)學(xué)試題含解析_第3頁(yè)
2024屆蘇錫常鎮(zhèn)四市高三最后一模數(shù)學(xué)試題含解析_第4頁(yè)
2024屆蘇錫常鎮(zhèn)四市高三最后一模數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆蘇錫常鎮(zhèn)四市高三最后一模數(shù)學(xué)試題注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,,則()A. B. C.3 D.42.已知雙曲線的一條漸近線傾斜角為,則()A.3 B. C. D.3.已知拋物線經(jīng)過(guò)點(diǎn),焦點(diǎn)為,則直線的斜率為()A. B. C. D.4.已知雙曲線的焦距為,若的漸近線上存在點(diǎn),使得經(jīng)過(guò)點(diǎn)所作的圓的兩條切線互相垂直,則雙曲線的離心率的取值范圍是()A. B. C. D.5.已知我市某居民小區(qū)戶主人數(shù)和戶主對(duì)戶型結(jié)構(gòu)的滿意率分別如圖和如圖所示,為了解該小區(qū)戶主對(duì)戶型結(jié)構(gòu)的滿意程度,用分層抽樣的方法抽取的戶主進(jìn)行調(diào)查,則樣本容量和抽取的戶主對(duì)四居室滿意的人數(shù)分別為A.240,18 B.200,20C.240,20 D.200,186.已知正四棱錐的側(cè)棱長(zhǎng)與底面邊長(zhǎng)都相等,是的中點(diǎn),則所成的角的余弦值為()A. B. C. D.7.在中,點(diǎn)D是線段BC上任意一點(diǎn),,,則()A. B.-2 C. D.28.設(shè)x、y、z是空間中不同的直線或平面,對(duì)下列四種情形:①x、y、z均為直線;②x、y是直線,z是平面;③z是直線,x、y是平面;④x、y、z均為平面.其中使“且”為真命題的是()A.③④ B.①③ C.②③ D.①②9.已知命題若,則,則下列說(shuō)法正確的是()A.命題是真命題B.命題的逆命題是真命題C.命題的否命題是“若,則”D.命題的逆否命題是“若,則”10.在中,已知,,,為線段上的一點(diǎn),且,則的最小值為()A. B. C. D.11.已知集合A={x|y=lg(4﹣x2)},B={y|y=3x,x>0}時(shí),A∩B=()A.{x|x>﹣2}B.{x|1<x<2}C.{x|1≤x≤2}D.?12.設(shè)函數(shù)的定義域?yàn)?,命題:,的否定是()A., B.,C., D.,二、填空題:本題共4小題,每小題5分,共20分。13.已知f(x)為偶函數(shù),當(dāng)x≤0時(shí),f(x)=e-x-1-x,則曲線y=f(x)14.邊長(zhǎng)為2的正方形經(jīng)裁剪后留下如圖所示的實(shí)線圍成的部分,將所留部分折成一個(gè)正四棱錐.當(dāng)該棱錐的體積取得最大值時(shí),其底面棱長(zhǎng)為_(kāi)_______.15.給出下列等式:,,,…請(qǐng)從中歸納出第個(gè)等式:______.16.已知拋物線C:y2=4x的焦點(diǎn)為F,準(zhǔn)線為l,P為C上一點(diǎn),PQ垂直l于點(diǎn)Q,M,N分別為PQ,PF的中點(diǎn),MN與x軸相交于點(diǎn)R,若∠NRF=60°,則|FR|等于_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知多面體中,、均垂直于平面,,,,是的中點(diǎn).(1)求證:平面;(2)求直線與平面所成角的正弦值.18.(12分)如圖,在三棱錐中,,是的中點(diǎn),點(diǎn)在上,平面,平面平面,為銳角三角形,求證:(1)是的中點(diǎn);(2)平面平面.19.(12分)為了實(shí)現(xiàn)中華民族偉大復(fù)興之夢(mèng),把我國(guó)建設(shè)成為富強(qiáng)民主文明和諧美麗的社會(huì)主義現(xiàn)代化強(qiáng)國(guó),黨和國(guó)家為勞動(dòng)者開(kāi)拓了寬廣的創(chuàng)造性勞動(dòng)的舞臺(tái).借此“東風(fēng)”,某大型現(xiàn)代化農(nóng)場(chǎng)在種植某種大棚有機(jī)無(wú)公害的蔬菜時(shí),為創(chuàng)造更大價(jià)值,提高畝產(chǎn)量,積極開(kāi)展技術(shù)創(chuàng)新活動(dòng).該農(nóng)場(chǎng)采用了延長(zhǎng)光照時(shí)間和降低夜間溫度兩種不同方案.為比較兩種方案下產(chǎn)量的區(qū)別,該農(nóng)場(chǎng)選取了40間大棚(每間一畝),分成兩組,每組20間進(jìn)行試點(diǎn).第一組采用延長(zhǎng)光照時(shí)間的方案,第二組采用降低夜間溫度的方案.同時(shí)種植該蔬菜一季,得到各間大棚產(chǎn)量數(shù)據(jù)信息如下圖:(1)如果你是該農(nóng)場(chǎng)的負(fù)責(zé)人,在只考慮畝產(chǎn)量的情況下,請(qǐng)根據(jù)圖中的數(shù)據(jù)信息,對(duì)于下一季大棚蔬菜的種植,說(shuō)出你的決策方案并說(shuō)明理由;(2)已知種植該蔬菜每年固定的成本為6千元/畝.若采用延長(zhǎng)光照時(shí)間的方案,光照設(shè)備每年的成本為0.22千元/畝;若采用夜間降溫的方案,降溫設(shè)備的每年成本為0.2千元/畝.已知該農(nóng)場(chǎng)共有大棚100間(每間1畝),農(nóng)場(chǎng)種植的該蔬菜每年產(chǎn)出兩次,且該蔬菜市場(chǎng)的收購(gòu)均價(jià)為1千元/千斤.根據(jù)題中所給數(shù)據(jù),用樣本估計(jì)總體,請(qǐng)計(jì)算在兩種不同的方案下,種植該蔬菜一年的平均利潤(rùn);(3)農(nóng)場(chǎng)根據(jù)以往該蔬菜的種植經(jīng)驗(yàn),認(rèn)為一間大棚畝產(chǎn)量超過(guò)5.25千斤為增產(chǎn)明顯.在進(jìn)行夜間降溫試點(diǎn)的20間大棚中隨機(jī)抽取3間,記增產(chǎn)明顯的大棚間數(shù)為,求的分布列及期望.20.(12分)在中,角,,所對(duì)的邊分別為,,,已知,,角為銳角,的面積為.(1)求角的大?。唬?)求的值.21.(12分)已知函數(shù).(1)求證:當(dāng)時(shí),;(2)若對(duì)任意存在和使成立,求實(shí)數(shù)的最小值.22.(10分)如圖,在四棱錐中,四邊形是直角梯形,底面,是的中點(diǎn).(1).求證:平面平面;(2).若二面角的余弦值為,求直線與平面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

根據(jù)復(fù)數(shù)相等的特征,求出和,再利用復(fù)數(shù)的模公式,即可得出結(jié)果.【詳解】因?yàn)椋?,解得則.故選:A.【點(diǎn)睛】本題考查相等復(fù)數(shù)的特征和復(fù)數(shù)的模,屬于基礎(chǔ)題.2、D【解析】

由雙曲線方程可得漸近線方程,根據(jù)傾斜角可得漸近線斜率,由此構(gòu)造方程求得結(jié)果.【詳解】由雙曲線方程可知:,漸近線方程為:,一條漸近線的傾斜角為,,解得:.故選:.【點(diǎn)睛】本題考查根據(jù)雙曲線漸近線傾斜角求解參數(shù)值的問(wèn)題,關(guān)鍵是明確直線傾斜角與斜率的關(guān)系;易錯(cuò)點(diǎn)是忽略方程表示雙曲線對(duì)于的范圍的要求.3、A【解析】

先求出,再求焦點(diǎn)坐標(biāo),最后求的斜率【詳解】解:拋物線經(jīng)過(guò)點(diǎn),,,,故選:A【點(diǎn)睛】考查拋物線的基礎(chǔ)知識(shí)及斜率的運(yùn)算公式,基礎(chǔ)題.4、B【解析】

由可得;由過(guò)點(diǎn)所作的圓的兩條切線互相垂直可得,又焦點(diǎn)到雙曲線漸近線的距離為,則,進(jìn)而求解.【詳解】,所以離心率,又圓是以為圓心,半徑的圓,要使得經(jīng)過(guò)點(diǎn)所作的圓的兩條切線互相垂直,必有,而焦點(diǎn)到雙曲線漸近線的距離為,所以,即,所以,所以雙曲線的離心率的取值范圍是.故選:B【點(diǎn)睛】本題考查雙曲線的離心率的范圍,考查雙曲線的性質(zhì)的應(yīng)用.5、A【解析】

利用統(tǒng)計(jì)圖結(jié)合分層抽樣性質(zhì)能求出樣本容量,利用條形圖能求出抽取的戶主對(duì)四居室滿意的人數(shù).【詳解】樣本容量為:(150+250+400)×30%=240,∴抽取的戶主對(duì)四居室滿意的人數(shù)為:故選A.【點(diǎn)睛】本題考查樣本容量和抽取的戶主對(duì)四居室滿意的人數(shù)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意統(tǒng)計(jì)圖的性質(zhì)的合理運(yùn)用.6、C【解析】試題分析:設(shè)的交點(diǎn)為,連接,則為所成的角或其補(bǔ)角;設(shè)正四棱錐的棱長(zhǎng)為,則,所以,故C為正確答案.考點(diǎn):異面直線所成的角.7、A【解析】

設(shè),用表示出,求出的值即可得出答案.【詳解】設(shè)由,,.故選:A【點(diǎn)睛】本題考查了向量加法、減法以及數(shù)乘運(yùn)算,需掌握向量加法的三角形法則以及向量減法的幾何意義,屬于基礎(chǔ)題.8、C【解析】

①舉反例,如直線x、y、z位于正方體的三條共點(diǎn)棱時(shí)②用垂直于同一平面的兩直線平行判斷.③用垂直于同一直線的兩平面平行判斷.④舉例,如x、y、z位于正方體的三個(gè)共點(diǎn)側(cè)面時(shí).【詳解】①當(dāng)直線x、y、z位于正方體的三條共點(diǎn)棱時(shí),不正確;②因?yàn)榇怪庇谕黄矫娴膬芍本€平行,正確;③因?yàn)榇怪庇谕恢本€的兩平面平行,正確;④如x、y、z位于正方體的三個(gè)共點(diǎn)側(cè)面時(shí),不正確.故選:C.【點(diǎn)睛】此題考查立體幾何中線面關(guān)系,選擇題一般可通過(guò)特殊值法進(jìn)行排除,屬于簡(jiǎn)單題目.9、B【解析】

解不等式,可判斷A選項(xiàng)的正誤;寫(xiě)出原命題的逆命題并判斷其真假,可判斷B選項(xiàng)的正誤;利用原命題與否命題、逆否命題的關(guān)系可判斷C、D選項(xiàng)的正誤.綜合可得出結(jié)論.【詳解】解不等式,解得,則命題為假命題,A選項(xiàng)錯(cuò)誤;命題的逆命題是“若,則”,該命題為真命題,B選項(xiàng)正確;命題的否命題是“若,則”,C選項(xiàng)錯(cuò)誤;命題的逆否命題是“若,則”,D選項(xiàng)錯(cuò)誤.故選:B.【點(diǎn)睛】本題考查四種命題的關(guān)系,考查推理能力,屬于基礎(chǔ)題.10、A【解析】

在中,設(shè),,,結(jié)合三角形的內(nèi)角和及和角的正弦公式化簡(jiǎn)可求,可得,再由已知條件求得,,,考慮建立以所在的直線為軸,以所在的直線為軸建立直角坐標(biāo)系,根據(jù)已知條件結(jié)合向量的坐標(biāo)運(yùn)算求得,然后利用基本不等式可求得的最小值.【詳解】在中,設(shè),,,,即,即,,,,,,,,即,又,,,則,所以,,解得,.以所在的直線為軸,以所在的直線為軸建立如下圖所示的平面直角坐標(biāo)系,則、、,為線段上的一點(diǎn),則存在實(shí)數(shù)使得,,設(shè),,則,,,,,消去得,,所以,,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,因此,的最小值為.故選:A.【點(diǎn)睛】本題是一道構(gòu)思非常巧妙的試題,綜合考查了三角形的內(nèi)角和定理、兩角和的正弦公式及基本不等式求解最值問(wèn)題,解題的關(guān)鍵是理解是一個(gè)單位向量,從而可用、表示,建立、與參數(shù)的關(guān)系,解決本題的第二個(gè)關(guān)鍵點(diǎn)在于由,發(fā)現(xiàn)為定值,從而考慮利用基本不等式求解最小值,考查計(jì)算能力,屬于難題.11、B【解析】試題分析:由集合A中的函數(shù)y=lg(4-x2),得到4-x2>0,解得:-2<x<2,∴集合A={x|-2<x<2},由集合B中的函數(shù)考點(diǎn):交集及其運(yùn)算.12、D【解析】

根據(jù)命題的否定的定義,全稱命題的否定是特稱命題求解.【詳解】因?yàn)椋?,是全稱命題,所以其否定是特稱命題,即,.故選:D【點(diǎn)睛】本題主要考查命題的否定,還考查了理解辨析的能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、y=2x【解析】試題分析:當(dāng)x>0時(shí),-x<0,則f(-x)=ex-1+x.又因?yàn)閒(x)為偶函數(shù),所以f(x)=f(-x)=ex-1+x,所以f'【考點(diǎn)】函數(shù)的奇偶性、解析式及導(dǎo)數(shù)的幾何意義【知識(shí)拓展】本題題型可歸納為“已知當(dāng)x>0時(shí),函數(shù)y=f(x),則當(dāng)x<0時(shí),求函數(shù)的解析式”.有如下結(jié)論:若函數(shù)f(x)為偶函數(shù),則當(dāng)x<0時(shí),函數(shù)的解析式為y=-f(x);若f(x)為奇函數(shù),則函數(shù)的解析式為y=-f(-x).14、【解析】

根據(jù)題意,建立棱錐體積的函數(shù),利用導(dǎo)數(shù)求函數(shù)的最大值即可.【詳解】設(shè)底面邊長(zhǎng)為,則斜高為,即此四棱錐的高為,所以此四棱錐體積為,令,令,易知函數(shù)在時(shí)取得最大值.故此時(shí)底面棱長(zhǎng).故答案為:.【點(diǎn)睛】本題考查棱錐體積的求解,涉及利用導(dǎo)數(shù)研究體積最大值的問(wèn)題,屬綜合中檔題.15、【解析】

通過(guò)已知的三個(gè)等式,找出規(guī)律,歸納出第個(gè)等式即可.【詳解】解:因?yàn)椋?,,,等式的右邊系?shù)是2,且角是等比數(shù)列,公比為,則角滿足:第個(gè)等式中的角,所以;故答案為:.【點(diǎn)睛】本題主要考查歸納推理,注意已知表達(dá)式的特征是解題的關(guān)鍵,屬于中檔題.16、2【解析】

由題意知:,,,.由∠NRF=60°,可得為等邊三角形,MF⊥PQ,可得F為HR的中點(diǎn),即求.【詳解】不妨設(shè)點(diǎn)P在第一象限,如圖所示,連接MF,QF.∵拋物線C:y2=4x的焦點(diǎn)為F,準(zhǔn)線為l,P為C上一點(diǎn)∴,.∵M(jìn),N分別為PQ,PF的中點(diǎn),∴,∵PQ垂直l于點(diǎn)Q,∴PQ//OR,∵,∠NRF=60°,∴為等邊三角形,∴MF⊥PQ,易知四邊形和四邊形都是平行四邊形,∴F為HR的中點(diǎn),∴,故答案為:2.【點(diǎn)睛】本題主要考查拋物線的定義,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析;(2).【解析】

(1)取的中點(diǎn),連接、,推導(dǎo)出四邊形為平行四邊形,可得出,由此能證明平面;(2)由,得平面,則點(diǎn)到平面的距離等于點(diǎn)到平面的距離,在平面內(nèi)過(guò)點(diǎn)作于點(diǎn),就是到平面的距離,也就是點(diǎn)到平面的距離,由此能求出直線與平面所成角的正弦值.【詳解】(1)取的中點(diǎn),連接、,、分別為、的中點(diǎn),則且,、均垂直于平面,且,則,且,所以,四邊形為平行四邊形,則,平面,平面,因此,平面;(2)由,平面,平面,平面,點(diǎn)到平面的距離等于點(diǎn)到平面的距離,在平面內(nèi)過(guò)點(diǎn)作于點(diǎn),平面,平面,,,,平面,即就是到平面的距離,也就是點(diǎn)到平面的距離,設(shè),則到平面的距離,,因此,直線與平面所成角的正弦值為.【點(diǎn)睛】本題考查線面平行的證明,考查線面角的正弦值的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想,是中檔題.18、(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;【解析】

(1)推導(dǎo)出,由是的中點(diǎn),能證明是有中點(diǎn).(2)作于點(diǎn),推導(dǎo)出平面,從而,由,能證明平面,由此能證明平面平面.【詳解】證明:(1)在三棱錐中,平面,平面平面,平面,,在中,是的中點(diǎn),是有中點(diǎn).(2)在三棱錐中,是銳角三角形,在中,可作于點(diǎn),平面平面,平面平面,平面,平面,平面,,,,平面,平面,平面平面.【點(diǎn)睛】本題考查線段中點(diǎn)的證明,考查面面垂直的證明,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想,屬于中檔題.19、(1)見(jiàn)解析;(2)(i)該農(nóng)場(chǎng)若采用延長(zhǎng)光照時(shí)間的方法,預(yù)計(jì)每年的利潤(rùn)為426千元;(ii)若采用降低夜間溫度的方法,預(yù)計(jì)每年的利潤(rùn)為424千元;(3)分布列見(jiàn)解析,.【解析】

(1)估計(jì)第一組數(shù)據(jù)平均數(shù)和第二組數(shù)據(jù)平均數(shù)來(lái)選擇.(2)對(duì)于兩種方法,先計(jì)算出每畝平均產(chǎn)量,再算農(nóng)場(chǎng)一年的利潤(rùn).(3)估計(jì)頻率分布直方圖可知,增產(chǎn)明顯的大棚間數(shù)為5間,由題意可知,的可能取值有0,1,2,3,再算出相應(yīng)的概率,寫(xiě)出分布列,再求期望.【詳解】(1)第一組數(shù)據(jù)平均數(shù)為千斤/畝,第二組數(shù)據(jù)平均數(shù)為千斤/畝,可知第一組方法較好,所以采用延長(zhǎng)光照時(shí)間的方法;((2)(i)對(duì)于采用延長(zhǎng)光照時(shí)間的方法:每畝平均產(chǎn)量為千斤.∴該農(nóng)場(chǎng)一年的利潤(rùn)為千元.(ii)對(duì)于采用降低夜間溫度的方法:每畝平均產(chǎn)量為千斤,∴該農(nóng)場(chǎng)一年的利潤(rùn)為千元.因此,該農(nóng)場(chǎng)若采用延長(zhǎng)光照時(shí)間的方法,預(yù)計(jì)每年的利潤(rùn)為426千元;若采用降低夜間溫度的方法,預(yù)計(jì)每年的利潤(rùn)為424千元.(3)由圖可知,增產(chǎn)明顯的大棚間數(shù)為5間,由題意可知,的可能取值有0,1,2,3,;;;.所以的分布列為0123所以.【點(diǎn)睛】本題主要考查樣本估計(jì)總體和離散型隨機(jī)變量的分布列,還考查了數(shù)據(jù)處理和運(yùn)算求解的能力,屬于中檔題.20、(1);(2)7.【解析】分析:(1)由三角形面積公式和已知條件求得sinA的值,進(jìn)而求得A;(2)利用余弦定理公式和(1)中求得的A求得a.詳解:(1)∵,∴,∵為銳角,∴;(2)由余弦定理得:.點(diǎn)睛:本題主要考查正弦定理邊角互化及余弦定理的應(yīng)用與特殊角的三角函數(shù),屬于簡(jiǎn)單題.對(duì)余弦定理一定要熟記兩種形式:(1);(2),同時(shí)還要熟練掌握運(yùn)用兩種形式的條件.另外,在解與三角形、三角函數(shù)有關(guān)的問(wèn)題時(shí),還需要記住等特殊角的三角函數(shù)值,以

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論