版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
Chapter5ElementaryStatisticsLarsonFarberNNormalProbabilityDistributions1IntroductiontoNormalDistributionsThestandardNormalDistributionSection5.12PropertiesofaNormalDistributionThemean,median,andmodeareequalBellshapedandissymmetricaboutthemeanThetotalareathatliesunderthecurveisoneor100%x3Asthecurveextendsfartherandfartherawayfromthemean,itgetscloserandclosertothex-axisbutnevertouchesit.Thepointsatwhichthecurvaturechangesarecalledinflectionpoints.ThegraphcurvesdownwardbetweentheinflectionpointsandcurvesupwardpasttheinflectionpointstotheleftandtotherightxInflectionpointInflectionpointPropertiesofaNormalDistribution4MeansandStandardDeviations2012151810111314161719212291215181011131416171920Curveswithdifferentmeansdifferentstandarddeviations
Curveswithdifferentmeans,samestandarddeviation
5TheStandardScoreThestandardscore,orz-score,representsthenumberofstandarddeviationsarandomvariablexfallsfromthemean.Thetestscoresforacivilserviceexamarenormallydistributedwithameanof152andstandarddeviationof7.Findthestandardz-scoreforapersonwithascoreof:(a)161 (b)148 (c)152(c)(a)(b)6TheStandardNormalDistributionThestandardnormaldistributionhasameanof0andastandarddeviationof1.Usingz-scoresanynormaldistributioncanbetransformedintothestandardnormaldistribution.432101234z7CumulativeAreas
Thecumulativeareaiscloseto1forzscorescloseto3.49.Thecumulativeareaiscloseto0forz-scorescloseto-3.49.
Thecumulativeareaforz=0is0.5000Thetotalareaunderthecurveisone.0123-1-2-3z8Findthecumulativeareaforaz-scoreof-1.25.0123-1-2-3zCumulativeAreas0.1056Readdownthezcolumnonthelefttoz=-1.2andacrosstothecolumnunder.05.Thevalueinthecellis
0.1056,thecumulativearea.Theprobabilitythatzisatmost-1.25is0.1056.P(z
-1.25)=0.10569FindingProbabilitiesTofindtheprobabilitythatzislessthanagivenvalue,readthecumulativeareainthetablecorrespondingtothatz-score.0123-1-2-3zReaddownthez-columnto-1.4andacrossto.05.Thecumulativeareais0.0735.
FindP(z<-1.45)P(z<-1.45)=0.073510FindingProbabilitiesTofindtheprobabilitythatzisgreaterthanagivenvalue,subtractthecumulativeareainthetablefrom1.0123-1-2-3zP(z>-1.24)=0.8925RequiredareaFindP(z>-1.24)Thecumulativearea(areatotheleft)is0.1075.Sotheareatotherightis1-0.1075=
0.8925.0.10750.892511FindingProbabilitiesTofindtheprobabilityzisbetweentwogivenvalues,findthecumulativeareasforeachandsubtractthesmallerareafromthelarger.FindP(-1.25<z<1.17)1.P(z<1.17)=0.87902.P(z<-1.25)=0.10563.P(-1.25<z<1.17)=0.8790-0.1056=0.77340123-1-2-3z120123-1
-2-3zSummaryTofindtheprobabilitythatzislessthanagivenvalue,readthecorrespondingcumulativearea.0123-1-2-3zTofindtheprobabilityisgreaterthanagivenvalue,subtractthecumulativeareainthetablefrom1.0123-1-2-3zTofindtheprobabilityzisbetweentwogivenvalues,findthecumulativeareasforeachandsubtractthesmallerareafromthelarger.13NormalDistributionsFindingProbabilitiesSection5.214ProbabilitiesandNormalDistributions115100Ifarandomvariable,xisnormallydistributed,the
probability
thatxwillfallwithinanintervalisequaltotheareaunderthecurveintheinterval.IQscoresarenormallydistributedwithameanof100andstandarddeviationof15.FindtheprobabilitythatapersonselectedatrandomwillhaveanIQscorelessthan115.
Tofindtheareainthisinterval,firstfindthestandardscoreequivalenttox=115.1501ProbabilitiesandNormalDistributionsFindP(z<1)115100StandardNormalDistributionFindP(x<115)NormalDistributionP(z<1)=0.8413,soP(x<115)=0.8413SAMESAME16Monthlyutilitybillsinacertaincityarenormallydistributedwithameanof$100andastandarddeviationof$12.Autilitybillisrandomlyselected.Findtheprobabilityitisbetween$80and$115.P(80<x<115)NormalDistributionP(-1.67<z<1.25)0.8944-0.0475=0.8469Theprobabilityautilitybillisbetween$80and$115is0.8469.Application17NormalDistributionsFindingValuesSection5.318z0.9803FromAreastoz-scoresLocate0.9803intheareaportionofthetable.Readthevaluesatthebeginningofthecorrespondingrowandatthetopofthecolumn.Thez-scoreis2.06.Findthez-scorecorrespondingtoacumulativeareaof0.9803.z=2.06correspondsroughlytothe98thpercentile.4321012340.980319Findingz-scoresFromAreasFindthez-scorecorrespondingtothe90thpercentile.z0.90Theclosesttableareais.8997.Therowheadingis1.2andcolumnheading.08.Thiscorrespondstoz=1.28.Az-scoreof1.28correspondstothe90thpercentile.20Findingz-scoresFromAreasFindthez-scorewithanareaof.60fallingtoitsright..60.400zzWith.60totheright,cumulativeareais.40.Theclosestareais.4013.Therowheadingis–0.2andcolumnheadingis.05.Thez-scoreis–0.25.Az-scoreof–0.25hasanareaof.60toitsright.Italsocorrespondstothe40thpercentile21Findingz-scoresFromAreasFindthez-scoresuchthat45%oftheareaunderthecurvefallsbetween–zandz.0z-zThearearemaininginthetailsis.55.Halfthisareaisineachtail,sosince.55/2=.275isthecumulativeareaforthenegativezvalueand.275+.45=.725isthecumulativeareaforthepositivez.Theclosesttableareais.2743andthez-scoreis–0.60.Thepositivezscoreis0.60..45.275.27522Fromz-ScorestoRawScoresThetestscoresforacivilserviceexamarenormallydistributedwithameanof152andstandarddeviationof7.Findthetestscoreforapersonwithastandardscoreof(a)2.33(b)-1.75(c)0(a)x=152+(2.33)(7)=168.31(b)x=152+(-1.75)(7)=139.75(c)x=152+(0)(7)=152Tofindthedatavalue,xwhengivenastandardscore,z: 23FindingPercentilesorCut-offvaluesMonthlyutilitybillsinacertaincityarenormallydistributedwithameanof$100andastandarddeviationof$12.Whatisthesmallestutilitybillthatcanbeinthetop10%ofthebills?10%90%Findthecumulativeareainthetablethatisclosestto0.9000(the90thpercentile.)Thearea0.8997correspondstoaz-scoreof1.28.x=100+1.28(12)=115.36.$115.36isthesmallestvalueforthetop10%.zTofindthecorrespondingx-value,use24TheCentralLimitTheoremSection5.425SamplingDistributionsAsamplingdistributionistheprobabilitydistributionofasamplestatisticthatisformedwhensamplesofsizenarerepeatedlytakenfromapopulation.Ifthesamplestatisticisthesamplemean,thenthedistributionisthesamplingdistributionofsamplemeans.SampleSampleSampleSampleSampleSampleThesamplingdistributionconsistsofthevaluesofthesamplemeans,
26xthesamplemeanswillhavea
normaldistributionTheCentralLimitTheoremwithameanandstandarddeviationIfasamplen30istakenfromapopulationwith
anytypedistributionthathasamean= andstandarddeviation=27thedistributionofmeansofsamplesizen,willbenormal
withameanstandarddeviationTheCentralLimitTheoremxIfasampleofanysizeistakenfromapopulationwith
anormaldistributionwithmean=andstandarddeviation=
28Application69.2Distributionofmeansofsamplesize60,willbenormal.ThemeanheightofAmericanmen(ages20-29)isinches.Randomsamplesof60suchmenareselected.Findthemeanandstandarddeviation(standarderror)ofthesamplingdistribution.meanStandarddeviation29InterpretingtheCentralLimitTheoremThemeanheightofAmericanmen(ages20-29)is
=69.2”.Ifarandomsampleof60meninthisagegroupisselected,whatistheprobabilitythemeanheightforthesampleisgreaterthan70”?Assumethestandarddeviationis2.9”.Findthez-scoreforasamplemeanof70:standarddeviationmeanSincen>30thesamplingdistributionofwillbenormal30InterpretingtheCentralLimitTheorem2.14P(>70)zThereisa0.0162probabilitythatasampleof60menwillhaveameanheightgreaterthan70”.=P(z>2.14)=1-0.9838
=0.0162InterpretingtheCentralLimitTheorem
31ApplicationCentralLimitTheoremDuringacertainweekthemeanpriceofgasolineinCaliforniawas$1.164pergallon.Whatistheprobabilitythatthemeanpriceforthesampleof38gasstationsinCaliforniaisbetween$1.169and$1.179?Assumethestandarddeviation=$0.049.standarddeviationmeanCalculatethestandardz-scoreforsamplevaluesof$1.169and$1.179.Sincen>30thesamplingdistributionofwillbenormal32.631.90zApplicationCentralLimitTheoremP(0.63<z<1.90)=0.9713-0.7357=0.2356Theprobabilityis0.2356thatthemeanforthesampleisbetween$1.169and$1.179.33NormalApproximationtotheBinomialSection5.534BinomialDistributionCharacteristicsThereareafixednumberofindependenttrials.(n)Eachtrialhas2outcomes,SuccessorFailure.Theprobabilityofsuccessonasingletrialispandtheprobabilityoffailureisq.p+q=1Wecanfindtheprobabilityofexactlyxsuccessesoutofntrials.Wherex=0or1or2…n.
xisadiscreterandomvariablerepresentingacountofthenumberofsuccessesinntrials.35Application34%ofAmericanshavetypeA+blood.If500Americansaresampledatrandom,whatistheprobabilityatleast300havetypeA+blood?Usingtechniquesofchapter4youcouldcalculatetheprobabilitythatexactly300,exactly301…exactly500AmericanshaveA+bloodtypeandaddtheprobabilities.Or…youcouldusethenormalcurveprobabilitiestoapproximatethebinomialprobabilities.Ifnp
5andnq5,thebinomialrandomvariablexisapproximatelynormallydistributedwithmeanand36Whydowerequirenp5andnq5?
01234544n=5p=0.25,q=.75np=1.25nq=3.75n=20p=0.25np=5nq=15n=50p=0.25np=12.5nq=37.50102030405037BinomialProbabilitiesThebinomialdistributionisdiscretewithaprobabilityhistogramgraph.The
probabilitythataspecificvalueof
x
willoccurisequaltothearea
oftherectanglewithmidpointatx.
Ifn=50andp=0.25findP(15
x17)Addtheareasoftherectangleswithmidpointsatx=15,x=16,x=17.1516170.0890.0660.0430.089+0.066+.043=0.198=.20P(15
x17)=0.197Approximately20%38151617CorrectionforContinuityCheckthatnp=12.5
5andnq=37.5
5.
UsethenormalapproximationtothebinomialtofindP(14
x16)ifn=50andp=0.25Valuesforthebinomialrandomvariablexare15,16and17.39151617CorrectionforContinuityCheckthatnp=12.5
5andnq=37.5
5.
UsethenormalapproximationtothebinomialtofindP(15
x17)ifn=50andp=0.25Theintervalofvaluesunderthenormalcurveis14.5
x17.5.Toensuretheboundariesofeachrectangleareincludedintheinterval,subtract0.5fromaleft-handboundaryandadd0.5toa
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 思修課件 第三章 領(lǐng)悟人生真諦
- 古詩詞誦讀《錦瑟》課件 2024-2025學年統(tǒng)編版高中語文選擇性必修中冊
- 安徽省渦陽縣第一中學2025屆高考仿真卷數(shù)學試卷含解析
- 山東省兗州市第一中學2025屆高考沖刺英語模擬試題含解析
- 2025屆豫南九校高三沖刺模擬語文試卷含解析
- 2025屆內(nèi)蒙古自治區(qū)普通高中學高三第五次模擬考試語文試卷含解析
- 云浮市重點中學2025屆高三第二次模擬考試英語試卷含解析
- 安徽省蒙城縣一中2025屆高三適應(yīng)性調(diào)研考試英語試題含解析
- 2025屆甘肅省合水縣第一中學高考數(shù)學二模試卷含解析
- 2025屆甘肅省蘭州市城關(guān)區(qū)蘭州第一中學高考英語三模試卷含解析
- 廠房轉(zhuǎn)租三方協(xié)議合同協(xié)議書
- 水務(wù)產(chǎn)業(yè)技術(shù)標準化
- 人教版二年級語文上冊期末考試卷及答案下載
- 2024年人工智能(AI)訓練師職業(yè)技能鑒定考試題庫(濃縮500題)
- 《中國古代寓言》導讀(課件)2023-2024學年統(tǒng)編版語文三年級下冊
- 2024至2030年中國鋁棒行業(yè)市場發(fā)展監(jiān)測及投資前景展望報告
- 全國青島版初中信息技術(shù)第四冊第二單元第9課《初識物聯(lián)網(wǎng)》教學設(shè)計
- 船舶交易居間協(xié)議
- 工廠設(shè)計與布局合同
- 工會工作制度匯編
- JBT 12727.5-2016 無損檢測儀器 試樣 第5部分:滲透檢測試樣
評論
0/150
提交評論