四川省旺蒼縣兩鄉(xiāng)鎮(zhèn)初級中學2024屆中考數(shù)學全真模擬試卷含解析_第1頁
四川省旺蒼縣兩鄉(xiāng)鎮(zhèn)初級中學2024屆中考數(shù)學全真模擬試卷含解析_第2頁
四川省旺蒼縣兩鄉(xiāng)鎮(zhèn)初級中學2024屆中考數(shù)學全真模擬試卷含解析_第3頁
四川省旺蒼縣兩鄉(xiāng)鎮(zhèn)初級中學2024屆中考數(shù)學全真模擬試卷含解析_第4頁
四川省旺蒼縣兩鄉(xiāng)鎮(zhèn)初級中學2024屆中考數(shù)學全真模擬試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

四川省旺蒼縣兩鄉(xiāng)鎮(zhèn)初級中學2024屆中考數(shù)學全真模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在平面直角坐標系中,是反比例函數(shù)的圖像上一點,過點做軸于點,若的面積為2,則的值是()A.-2 B.2 C.-4 D.42.下列計算正確的是()A.2x﹣x=1 B.x2?x3=x6C.(m﹣n)2=m2﹣n2 D.(﹣xy3)2=x2y63.如圖,⊙O的半徑OA=6,以A為圓心,OA為半徑的弧交⊙O于B、C點,則BC=()A.6 B.6 C.3 D.34.-的立方根是()A.-8 B.-4 C.-2 D.不存在5.如圖,在平面直角坐標系中,正方形ABCD的頂點A的坐標為(﹣1,1),點B在x軸正半軸上,點D在第三象限的雙曲線上,過點C作CE∥x軸交雙曲線于點E,連接BE,則△BCE的面積為()A.5 B.6 C.7 D.86.設0<k<2,關于x的一次函數(shù)y=(k-2)x+2,當1≤x≤2時,y的最小值是()A.2k-2B.k-1C.kD.k+17.下列四個幾何體中,主視圖是三角形的是()A. B. C. D.8.如圖,AB∥CD,直線EF與AB、CD分別相交于E、F,AM⊥EF于點M,若∠EAM=10°,那么∠CFE等于()A.80° B.85° C.100° D.170°9.如圖,已知,,則的度數(shù)為()A. B. C. D.10.如圖,已知AC是⊙O的直徑,點B在圓周上(不與A、C重合),點D在AC的延長線上,連接BD交⊙O于點E,若∠AOB=3∠ADB,則()A.DE=EB B.DE=EB C.DE=DO D.DE=OB二、填空題(共7小題,每小題3分,滿分21分)11.如圖,AB為半圓的直徑,且AB=2,半圓繞點B順時針旋轉40°,點A旋轉到A′的位置,則圖中陰影部分的面積為_____(結果保留π).12.某社區(qū)有一塊空地需要綠化,某綠化組承擔了此項任務,綠化組工作一段時間后,提高了工作效率.該綠化組完成的綠化面積S(單位:m1)與工作時間t(單位:h)之間的函數(shù)關系如圖所示,則該綠化組提高工作效率前每小時完成的綠化面積是_____m1.13.如圖,矩形OABC的兩邊落在坐標軸上,反比例函數(shù)y=的圖象在第一象限的分支過AB的中點D交OB于點E,連接EC,若△OEC的面積為12,則k=_____.14.化簡:______.15.若一個正n邊形的每個內(nèi)角為144°,則這個正n邊形的所有對角線的條數(shù)是_________.16.在一張直角三角形紙片的兩直角邊上各取一點,分別沿斜邊中點與這兩點的連線剪去兩個三角形,剩下的部分是如圖所示的四邊形,AB∥CD,CD⊥BC于C,且AB、BC、CD邊長分別為2,4,3,則原直角三角形紙片的斜邊長是_______.17.甲、乙兩點在邊長為100m的正方形ABCD上按順時針方向運動,甲的速度為5m/秒,乙的速度為10m/秒,甲從A點出發(fā),乙從CD邊的中點出發(fā),則經(jīng)過__秒,甲乙兩點第一次在同一邊上.三、解答題(共7小題,滿分69分)18.(10分)為了保障市民安全用水,我市啟動自來水管改造工程,該工程若甲隊單獨施工,恰好在規(guī)定時間內(nèi)完成;若由乙隊單獨施工,則完成工程所需天數(shù)是規(guī)定天數(shù)的3倍.若甲、乙兩隊先合作施工45天,則余下的工程甲隊還需單獨施工23天才能完成.這項工程的規(guī)定時間是多少天?19.(5分)如圖,一個長方形運動場被分隔成A、B、A、B、C共5個區(qū),A區(qū)是邊長為am的正方形,C區(qū)是邊長為bm的正方形.列式表示每個B區(qū)長方形場地的周長,并將式子化簡;列式表示整個長方形運動場的周長,并將式子化簡;如果a=20,b=10,求整個長方形運動場的面積.20.(8分)濟南國際滑雪自建成以來,吸引大批滑雪愛好者,一滑雪者從山坡滑下,測得滑行距離y(單位:m)與滑行時間x(單位:s)之間的關系可以近似的用二次函數(shù)來表示.滑行時間x/s0123…滑行距離y/m041224…(1)根據(jù)表中數(shù)據(jù)求出二次函數(shù)的表達式.現(xiàn)測量出滑雪者的出發(fā)點與終點的距離大約840m,他需要多少時間才能到達終點?將得到的二次函數(shù)圖象補充完整后,向左平移2個單位,再向下平移5個單位,求平移后的函數(shù)表達式.21.(10分)如圖,矩形ABCD中,AB>AD,把矩形沿對角線AC所在直線折疊,使點B落在點E處,AE交CD于點F,連接DE,求證:∠DAE=∠ECD.22.(10分)(7分)某中學1000名學生參加了”環(huán)保知識競賽“,為了了解本次競賽成績情況,從中抽取了部分學生的成績(得分取整數(shù),滿分為100分)作為樣本進行統(tǒng)計,并制作了如圖頻數(shù)分布表和頻數(shù)分布直方圖(不完整且局部污損,其中“■”表示被污損的數(shù)據(jù)).請解答下列問題:成績分組頻數(shù)頻率50≤x<6080.1660≤x<7012a70≤x<80■0.580≤x<9030.0690≤x≤100bc合計■1(1)寫出a,b,c的值;(2)請估計這1000名學生中有多少人的競賽成績不低于70分;(3)在選取的樣本中,從競賽成績是80分以上(含80分)的同學中隨機抽取兩名同學參加環(huán)保知識宣傳活動,求所抽取的2名同學來自同一組的概率.23.(12分)如圖1,直線l:y=x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點B,與直線l的另一個交點為C(4,n).(1)求n的值和拋物線的解析式;(2)點D在拋物線上,DE∥y軸交直線l于點E,點F在直線l上,且四邊形DFEG為矩形(如圖2),設點D的橫坐標為t(0<t<4),矩形DFEG的周長為p,求p與t的函數(shù)關系式以及p的最大值;(3)將△AOB繞平面內(nèi)某點M旋轉90°或180°,得到△A1O1B1,點A、O、B的對應點分別是點A1、O1、B1.若△A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數(shù)和旋轉180°時點A1的橫坐標.24.(14分)如圖,點D為△ABC邊上一點,請用尺規(guī)過點D,作△ADE,使點E在AC上,且△ADE與△ABC相似.(保留作圖痕跡,不寫作法,只作出符合條件的一個即可)

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

根據(jù)反比例函數(shù)k的幾何意義,求出k的值即可解決問題【詳解】解:∵過點P作PQ⊥x軸于點Q,△OPQ的面積為2,

∴||=2,

∵k<0,

∴k=-1.

故選:C.【點睛】本題考查反比例函數(shù)k的幾何意義,解題的關鍵是理解題意,靈活運用所學知識解決問題,屬于中考??碱}型.2、D【解析】

根據(jù)合并同類項的法則,積的乘方,完全平方公式,同底數(shù)冪的乘法的性質(zhì),對各選項分析判斷后利用排除法求解.【詳解】解:A、2x-x=x,錯誤;B、x2?x3=x5,錯誤;C、(m-n)2=m2-2mn+n2,錯誤;D、(-xy3)2=x2y6,正確;故選D.【點睛】考查了整式的運算能力,對于相關的整式運算法則要求學生很熟練,才能正確求出結果.3、A【解析】試題分析:根據(jù)垂徑定理先求BC一半的長,再求BC的長.解:如圖所示,設OA與BC相交于D點.∵AB=OA=OB=6,∴△OAB是等邊三角形.又根據(jù)垂徑定理可得,OA平分BC,利用勾股定理可得BD=所以BC=2BD=.故選A.點睛:本題主要考查垂徑定理和勾股定理.解題的關鍵在于要利用好題中的條件圓O與圓A的半徑相等,從而得出△OAB是等邊三角形,為后繼求解打好基礎.4、C【解析】分析:首先求出的值,然后根據(jù)立方根的計算法則得出答案.詳解:∵,,∴的立方根為-2,故選C.點睛:本題主要考查的是算術平方根與立方根,屬于基礎題型.理解算術平方根與立方根的含義是解決本題的關鍵.5、C【解析】

作輔助線,構建全等三角形:過D作GH⊥x軸,過A作AG⊥GH,過B作BM⊥HC于M,證明△AGD≌△DHC≌△CMB,根據(jù)點D的坐標表示:AG=DH=-x-1,由DG=BM,列方程可得x的值,表示D和E的坐標,根據(jù)三角形面積公式可得結論.【詳解】解:過D作GH⊥x軸,過A作AG⊥GH,過B作BM⊥HC于M,設D(x,),∵四邊形ABCD是正方形,∴AD=CD=BC,∠ADC=∠DCB=90°,易得△AGD≌△DHC≌△CMB(AAS),∴AG=DH=﹣x﹣1,∴DG=BM,∵GQ=1,DQ=﹣,DH=AG=﹣x﹣1,由QG+DQ=BM=DQ+DH得:1﹣=﹣1﹣x﹣,解得x=﹣2,∴D(﹣2,﹣3),CH=DG=BM=1﹣=4,∵AG=DH=﹣1﹣x=1,∴點E的縱坐標為﹣4,當y=﹣4時,x=﹣,∴E(﹣,﹣4),∴EH=2﹣=,∴CE=CH﹣HE=4﹣=,∴S△CEB=CE?BM=××4=7;故選C.【點睛】考查正方形的性質(zhì)、全等三角形的判定和性質(zhì)、反比例函數(shù)的性質(zhì)等知識,解題的關鍵是靈活運用所學知識解決問題,學會構建方程解決問題.6、A【解析】

先根據(jù)0<k<1判斷出k-1的符號,進而判斷出函數(shù)的增減性,根據(jù)1≤x≤1即可得出結論.【詳解】∵0<k<1,∴k-1<0,∴此函數(shù)是減函數(shù),∵1≤x≤1,∴當x=1時,y最小=1(k-1)+1=1k-1.故選A.【點睛】本題考查的是一次函數(shù)的性質(zhì),熟知一次函數(shù)y=kx+b(k≠0)中,當k<0,b>0時函數(shù)圖象經(jīng)過一、二、四象限是解答此題的關鍵.7、D【解析】

主視圖是從幾何體的正面看,主視圖是三角形的一定是一個錐體,是長方形的一定是柱體,由此分析可得答案.【詳解】解:主視圖是三角形的一定是一個錐體,只有D是錐體.故選D.【點睛】此題主要考查了幾何體的三視圖,主要考查同學們的空間想象能力.8、C【解析】

根據(jù)題意,求出∠AEM,再根據(jù)AB∥CD,得出∠AEM與∠CFE互補,求出∠CFE.【詳解】∵AM⊥EF,∠EAM=10°∴∠AEM=80°又∵AB∥CD∴∠AEM+∠CFE=180°∴∠CFE=100°.故選C.【點睛】本題考查三角形內(nèi)角和與兩條直線平行內(nèi)錯角相等.9、B【解析】分析:根據(jù)∠AOC和∠BOC的度數(shù)得出∠AOB的度數(shù),從而得出答案.詳解:∵∠AOC=70°,∠BOC=30°,∴∠AOB=70°-30°=40°,∴∠AOD=∠AOB+∠BOD=40°+70°=110°,故選B.點睛:本題主要考查的是角度的計算問題,屬于基礎題型.理解各角之間的關系是解題的關鍵.10、D【解析】

解:連接EO.∴∠B=∠OEB,∵∠OEB=∠D+∠DOE,∠AOB=3∠D,∴∠B+∠D=3∠D,∴∠D+∠DOE+∠D=3∠D,∴∠DOE=∠D,∴ED=EO=OB,故選D.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】【分析】根據(jù)題意可得出陰影部分的面積等于扇形ABA′的面積加上半圓面積再減去半圓面積.【詳解】∵S陰影=S扇形ABA′+S半圓-S半圓=S扇形ABA′==,故答案為.【點睛】本題考查了扇形面積的計算以及旋轉的性質(zhì),熟記扇形面積公式且能準確識圖是解題的關鍵.12、150【解析】設綠化面積與工作時間的函數(shù)解析式為,因為函數(shù)圖象經(jīng)過,兩點,將兩點坐標代入函數(shù)解析式得得,將其代入得,解得,∴一次函數(shù)解析式為,將代入得,故提高工作效率前每小時完成的綠化面積為.13、12.【解析】

設AD=a,則AB=OC=2a,根據(jù)點D在反比例函數(shù)y=的圖象上,可得D點的坐標為(a,),所以OA=;過點E作EN⊥OC于點N,交AB于點M,則OA=MN=,已知△OEC的面積為12,OC=2a,根據(jù)三角形的面積公式求得EN=,即可求得EM=;設ON=x,則NC=BM=2a-x,證明△BME∽△ONE,根據(jù)相似三角形的性質(zhì)求得x=,即可得點E的坐標為(,),根據(jù)點E在在反比例函數(shù)y=的圖象上,可得·=k,解方程求得k值即可.【詳解】設AD=a,則AB=OC=2a,∵點D在反比例函數(shù)y=的圖象上,∴D(a,),∴OA=,過點E作EN⊥OC于點N,交AB于點M,則OA=MN=,∵△OEC的面積為12,OC=2a,∴EN=,∴EM=MN-EN=-=;設ON=x,則NC=BM=2a-x,∵AB∥OC,∴△BME∽△ONE,∴,即,解得x=,∴E(,),∵點E在在反比例函數(shù)y=的圖象上,∴·=k,解得k=,∵k>0,∴k=12.故答案為:12.【點睛】本題是反比例函數(shù)與幾何的綜合題,求得點E的坐標為(,)是解決問題的關鍵.14、3【解析】分析:根據(jù)算術平方根的概念求解即可.詳解:因為32=9所以=3.故答案為3.點睛:此題主要考查了算術平方根的意義,關鍵是確定被開方數(shù)是哪個正數(shù)的平方.15、2【解析】

由正n邊形的每個內(nèi)角為144°結合多邊形內(nèi)角和公式,即可得出關于n的一元一次方程,解方程即可求出n的值,將其代入中即可得出結論.【詳解】∵一個正n邊形的每個內(nèi)角為144°,

∴144n=180×(n-2),解得:n=1.

這個正n邊形的所有對角線的條數(shù)是:==2.

故答案為2.【點睛】本題考查了多邊形的內(nèi)角以及多邊形的對角線,解題的關鍵是求出正n邊形的邊數(shù).本題屬于基礎題,難度不大,解決該題型題目時,根據(jù)多邊形的內(nèi)角和公式求出多邊形邊的條數(shù)是關鍵.16、45或1【解析】

先根據(jù)題意畫出圖形,再根據(jù)勾股定理求出斜邊上的中線,最后即可求出斜邊的長.【詳解】①如圖:因為AC=22+4點A是斜邊EF的中點,所以EF=2AC=45,②如圖:因為BD=32點D是斜邊EF的中點,所以EF=2BD=1,綜上所述,原直角三角形紙片的斜邊長是45或1,故答案是:45或1.【點睛】此題考查了圖形的剪拼,解題的關鍵是能夠根據(jù)題意畫出圖形,在解題時要注意分兩種情況畫圖,不要漏解.17、1【解析】試題分析:設x秒時,甲乙兩點相遇.根據(jù)題意得:10x-5x=250,解得:x=50,相遇時甲走了250m,乙走了500米,則根據(jù)題意推得第一次在同一邊上時可以為1.三、解答題(共7小題,滿分69分)18、這項工程的規(guī)定時間是83天【解析】

依據(jù)題意列分式方程即可.【詳解】設這項工程的規(guī)定時間為x天,根據(jù)題意得451解得x=83.檢驗:當x=83時,3x≠0.所以x=83是原分式方程的解.答:這項工程的規(guī)定時間是83天.【點睛】正確理解題意是解題的關鍵,注意檢驗.19、(1)(2)(3)【解析】試題分析:(1)結合圖形可得矩形B的長可表示為:a+b,寬可表示為:a-b,繼而可表示出周長;(2)根據(jù)題意表示出整個矩形的長和寬,再求周長即可;(3)先表示出整個矩形的面積,然后代入計算即可.試題解析:(1)矩形B的長可表示為:a+b,寬可表示為:a-b,∴每個B區(qū)矩形場地的周長為:2(a+b+a-b)=4a;(2)整個矩形的長為a+a+b=2a+b,寬為:a+a-b=2a-b,∴整個矩形的周長為:2(2a+b+2a-b)=8a;(3)矩形的面積為:S=(2a+b)(2a-b)=,把,代入得,S=4×202-102=4×400-100=1500.點睛:本題考查了列代數(shù)式的知識,屬于基礎題,解答本題的關鍵是結合圖形表示出各矩形的長和寬.20、(1)20s;(2)【解析】

(1)利用待定系數(shù)法求出函數(shù)解析式,再求出y=840時x的值即可得;(2)根據(jù)“上加下減,左加右減”的原則進行解答即可.【詳解】解:(1)∵該拋物線過點(0,0),∴設拋物線解析式為y=ax2+bx,將(1,4)、(2,12)代入,得:,解得:,所以拋物線的解析式為y=2x2+2x,當y=840時,2x2+2x=840,解得:x=20(負值舍去),即他需要20s才能到達終點;(2)∵y=2x2+2x=2(x+)2﹣,∴向左平移2個單位,再向下平移5個單位后函數(shù)解析式為y=2(x+2+)2﹣﹣5=2(x+)2﹣.【點睛】本題主要考查二次函數(shù)的應用,解題的關鍵是掌握待定系數(shù)法求函數(shù)解析式及函數(shù)圖象平移的規(guī)律.21、見解析,【解析】

要證∠DAE=∠ECD.需先證△ADF≌△CEF,由折疊得BC=EC,∠B=∠AEC,由矩形得BC=AD,∠B=∠ADC=90°,再根據(jù)等量代換和對頂角相等可以證出,得出結論.【詳解】證明:由折疊得:BC=EC,∠B=∠AEC,∵矩形ABCD,∴BC=AD,∠B=∠ADC=90°,∴EC=DA,∠AEC=∠ADC=90°,又∵∠AFD=∠CFE,∴△ADF≌△CEF(AAS)∴∠DAE=∠ECD.【點睛】本題考查折疊的性質(zhì)、矩形的性質(zhì)、全等三角形的性質(zhì)和判定等知識,借助于三角形全等證明線段相等和角相等是常用的方法.22、(1)a=0.24,b=2,c=0.04;(2)600人;(3)人.【解析】

(1)利用50≤x<60的頻數(shù)和頻率,根據(jù)公式:頻率=頻數(shù)÷總數(shù)先計算出樣本總人數(shù),再分別計算出a,b,c的值;(2)先計算出競賽分數(shù)不低于70分的頻率,根據(jù)樣本估計總體的思想,計算出1000名學生中競賽成績不低于70分的人數(shù);(3)列樹形圖或列出表格,得到要求的所有情況和2名同學來自一組的情況,利用求概率公式計算出概率.【詳解】解:(1)樣本人數(shù)為:8÷0.16=50(名)a=12÷50=0.24,70≤x<80的人數(shù)為:50×0.5=25(名)b=50﹣8﹣12﹣25﹣3=2(名)c=2÷50=0.04所以a=0.24,b=2,c=0.04;(2)在選取的樣本中,競賽分數(shù)不低于70分的頻率是0.5+0.06+0.04=0.6,根據(jù)樣本估計總體的思想,有:1000×0.6=600(人)∴這1000名學生中有600人的競賽成績不低于70分;(3)成績是80分以上的同學共有5人,其中第4組有3人,不妨記為甲,乙,丙,第5組有2人,不妨記作A,B從競賽成績是80分以上(含80分)的同學中隨機抽取兩名同學,情形如樹形圖所示,共有20種情況:抽取兩名同學在同一組的有:甲乙,甲丙,乙甲,乙丙,丙甲,丙乙,AB,BA共8種情況,∴抽取的2名同學來自同一組的概率P==【點睛】本題考查了頻數(shù)、頻率、總數(shù)間關系及用列表法或樹形圖法求概率.列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹形圖法適合兩步或兩步以上完成的事件;概率=所求情況數(shù)與總情況數(shù)之比.23、(1)n=2;y=x2﹣x﹣1;(2)p=;當t=2時,p有最大值;(3)6個,或;【解析】

(1)把點B的坐標代入直線解析式求出m的值,再把點C的坐標代入直線求解即可得到n的值,然后利用待定系數(shù)法求二次函數(shù)解析式解答;

(2)令y=0求出點A的坐標,從而得到OA、OB的長度,利用勾股定理列式求出AB的長,然后根據(jù)兩直線平行,內(nèi)錯角相等可得∠ABO=∠DEF,再解直角三角形用DE表示出EF、DF,根據(jù)矩形的周長公式表示出p,利用直線和拋物線的解析式表示DE的長,整理即可得到P與t的關系式,再利用二次函數(shù)的最值問題解答;

(3)根據(jù)逆時針旋轉角為90°可得A1O1∥y軸時,B1O1∥x軸,旋轉角是180°判斷出A1O1∥x軸時,B1A1∥AB,根

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論