版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
重慶黔江實(shí)驗(yàn)中學(xué)2022-2023學(xué)年高一數(shù)學(xué)文下學(xué)期期末試卷含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1.△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c成等比數(shù)列,且,則cosB等于()A. B. C. D.參考答案:B【分析】成等比數(shù)列,可得,又,可得,利用余弦定理即可得出.【詳解】解:成等比數(shù)列,,又,,則故選:B?!军c(diǎn)睛】本題考查了等比數(shù)列的性質(zhì)、余弦定理,考查了推理能力與計(jì)算能力,屬于中檔題.2.下列函數(shù)在(0,+∞)上是增函數(shù)的是(
)A. B. C. D.參考答案:C【分析】根據(jù)函數(shù)的單調(diào)性的定義,結(jié)合初等函數(shù)的單調(diào)性,逐項(xiàng)判定,即可求解.【詳解】根據(jù)指數(shù)函數(shù)的性質(zhì),可得函數(shù)在為單調(diào)遞減函數(shù),不符合題意;根據(jù)一次函數(shù)的性質(zhì),可得函數(shù)在為單調(diào)遞減函數(shù),不符合題意;根據(jù)對(duì)數(shù)函數(shù)的性質(zhì),可得函數(shù)在為單調(diào)遞增函數(shù),符合題意;根據(jù)反比例函數(shù)的性質(zhì),可得函數(shù)在為單調(diào)遞減函數(shù),不符合題意.故選:C.【點(diǎn)睛】本題主要考查了函數(shù)的單調(diào)性的判定,其中解答中熟記初等函數(shù)的圖象與性質(zhì)是解答的關(guān)鍵,著重考查了推理與論證能力,屬于基礎(chǔ)題.3.已知,則在上的投影為()A.﹣2 B.2 C. D.參考答案:D【考點(diǎn)】平面向量的坐標(biāo)運(yùn)算.【分析】根據(jù)投影的定義在上的投影為.【解答】解:根據(jù)投影的定義可得:===2,故選:D4.已知圓的方程x2+y2=25,則過(guò)點(diǎn)P(3,4)的圓的切線方程為()A.3x﹣4y+7=0B.4x+3y﹣24=0C.3x+4y﹣25=0D.4x﹣3y=0參考答案:C考點(diǎn):圓的切線方程.專(zhuān)題:直線與圓.分析:由圓的方程找出圓心坐標(biāo)和圓的半徑,然后求出P與圓心的距離判斷出P在圓上即P為切點(diǎn),根據(jù)圓的切線垂直于過(guò)切點(diǎn)的直徑,由圓心和M的坐標(biāo)求出OP確定直線方程的斜率,根據(jù)兩直線垂直時(shí)斜率乘積為﹣1,求出切線的斜率,根據(jù)P坐標(biāo)和求出的斜率寫(xiě)出切線方程即可.解答:解:由圓x2+y2=25,得到圓心A的坐標(biāo)為(0,0),圓的半徑r=5,而|AP|=5=r,所以P在圓上,則過(guò)P作圓的切線與AP所在的直線垂直,又P(3,4),得到AP所在直線的斜率為﹣,所以切線的斜率為,則切線方程為:y﹣4=(x﹣3)即3x+4y﹣25=0.故選C.點(diǎn)評(píng):此題考查學(xué)生掌握點(diǎn)與圓的位置關(guān)系及直線與圓的位置關(guān)系,掌握兩直線垂直時(shí)斜率所滿(mǎn)足的關(guān)系,會(huì)根據(jù)一點(diǎn)的坐標(biāo)和直線的斜率寫(xiě)出直線的方程,是一道綜合題.5.已知函數(shù)f(x)=sin(ωx﹣)(<ω<2),在區(qū)間(0,)上()A.既有最大值又有最小值 B.有最大值沒(méi)有最小值C.有最小值沒(méi)有最大值 D.既沒(méi)有最大值也沒(méi)有最小值參考答案:B【考點(diǎn)】三角函數(shù)的最值.【分析】根據(jù)題意,求出ωx﹣的取值范圍,再利用正弦函數(shù)的圖象與性質(zhì)即可得出“函數(shù)f(x)在區(qū)間(0,)上有最大值1,沒(méi)有最小值”.【解答】解:函數(shù)f(x)=sin(ωx﹣),當(dāng)<ω<2,且x∈(0,)時(shí),0<ωx<ω<,所以﹣<ωx﹣<,所以﹣<sin(ωx﹣)≤1;所以,當(dāng)ωx﹣=時(shí),sin(ωx﹣)取得最大值1,即函數(shù)f(x)在區(qū)間(0,)上有最大值1,沒(méi)有最小值.故選:B.6.將邊長(zhǎng)為1的正方形以其一邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)一周,所得幾何體的側(cè)面積為()A.4π B.3π C.2π D.π參考答案:C【詳解】試題分析:將邊長(zhǎng)為1的正方形以其一邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)一周得到的幾何體為底面為半徑為的圓、高為1的圓柱,其側(cè)面展開(kāi)圖為長(zhǎng)為,寬為1,所以所得幾何體的側(cè)面積為.故選C.7.在下列關(guān)于直線與平面的命題中,正確的是 (
)A.若且,則
B.若且∥,則C.若且,則∥
D.若,且∥,則∥參考答案:B略8.在中,,,面積,則(
)A.
B.
C.
D.參考答案:B9.下面程序輸入x=π時(shí)的運(yùn)算結(jié)果是()inputxifx<0theny=-2;elseifx=0then
y=0;elsey=2;endifendifprintyend
A.-2
B.0
C.π
D.2參考答案:D10.直線x﹣y+3=0的傾斜角是()A.30° B.45° C.60° D.150°參考答案:C【考點(diǎn)】直線的傾斜角.【分析】設(shè)直線x﹣y+3=0的傾斜角為θ.由直線x﹣y+3=0化為y=x+3,可得tanθ=,即可得出.【解答】解:設(shè)直線x﹣y+3=0的傾斜角為θ.由直線x﹣y+3=0化為y=x+3,∴tanθ=,∵θ∈[0,π),∴θ=60°.故選C.二、填空題:本大題共7小題,每小題4分,共28分11.若數(shù)列{an}滿(mǎn)足,=,則=____參考答案:9【分析】由已知條件可得該數(shù)列是以3為首項(xiàng),3為公差的等差的等差數(shù)列,根據(jù)等差數(shù)列的通項(xiàng)公式即可得結(jié)果.【詳解】∵∴數(shù)列是以3為首項(xiàng),3為公差的等差的等差數(shù)列,∴,故答案為9.【點(diǎn)睛】本題主要考查了等差數(shù)列的基本概念,屬于基礎(chǔ)題.12.若四面體ABCD中,AB=CD=BC=AD=,AC=BD=,則四面體的外接球的表面積為.參考答案:6π【考點(diǎn)】球的體積和表面積.【分析】將四面體補(bǔ)成長(zhǎng)方體,通過(guò)求解長(zhǎng)方體的對(duì)角線就是球的直徑,然后求解外接球的表面積.【解答】解:由題意可采用割補(bǔ)法,考慮到四面體ABCD的四個(gè)面為全等的三角形,所以可在其每個(gè)面補(bǔ)上一個(gè)以,,為三邊的三角形作為底面,且以分別x,y,z長(zhǎng)、兩兩垂直的側(cè)棱的三棱錐,從而可得到一個(gè)長(zhǎng)、寬、高分別為x,y,z的長(zhǎng)方體,并且x2+y2=5,x2+z2=5,y2+z2=2,則有(2R)2=x2+y2+z2=6(R為球的半徑),所以球的表面積為S=4πR2=6π.故答案為:6π.13.王老師給出一個(gè)函數(shù),四個(gè)學(xué)生甲、乙、丙、丁各指出了這個(gè)函數(shù)的一個(gè)性質(zhì).甲:對(duì)于R,都有;乙:在上是減函數(shù);丙:在上是增函數(shù);?。翰皇呛瘮?shù)的最小值.現(xiàn)已知其中恰有三個(gè)說(shuō)得正確,則這個(gè)函數(shù)可能是
(只需寫(xiě)出一個(gè)這樣的函數(shù)即可).參考答案:14.若BA,則m的取值范圍
是
.參考答案:略15.二次函數(shù)的圖象如圖,則
0;
0;
0;
0。(填“”或“”、“”)參考答案:略16.已知集合,且則實(shí)數(shù)的取值范圍是
.參考答案:17.已知函數(shù)的圖像關(guān)于點(diǎn)P對(duì)稱(chēng),則點(diǎn)P的坐標(biāo)是
.參考答案:三、解答題:本大題共5小題,共72分。解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟18.已知函數(shù).(1)求的最小正周期及單調(diào)遞增區(qū)間;(2)求在區(qū)間上的零點(diǎn)參考答案:(1),遞增區(qū)間:(2)零點(diǎn)是【分析】(1)由二倍角公式化簡(jiǎn)得,再求單調(diào)性和周期即可(2)解方程求解即可【詳解】(1)
由題,故周期,令遞增區(qū)間:(2),解得:因?yàn)?,所以綜上,函數(shù)的零點(diǎn)是.【點(diǎn)睛】本題考查二倍角公式,三角函數(shù)的圖像及性質(zhì),準(zhǔn)確計(jì)算是關(guān)鍵,是基礎(chǔ)題19.化簡(jiǎn)求值:(1);(2).參考答案:【考點(diǎn)】對(duì)數(shù)的運(yùn)算性質(zhì).【專(zhuān)題】計(jì)算題.【分析】(1)化帶分?jǐn)?shù)為假分?jǐn)?shù),化小數(shù)為分?jǐn)?shù),然后利用有理指數(shù)冪的運(yùn)算性質(zhì)求解;(2)把根式內(nèi)部化為完全平方式后開(kāi)方,然后直接利用對(duì)數(shù)的運(yùn)算性質(zhì)化簡(jiǎn)求值.【解答】解:(1)===101;
(2)==lg2+(1﹣lg2)=1.【點(diǎn)評(píng)】本題考查了有理指數(shù)冪的運(yùn)算性質(zhì),考查了對(duì)數(shù)的運(yùn)算性質(zhì),考查了學(xué)生的計(jì)算能力,是基礎(chǔ)題.20.在中,,.(1)求的值;
(2)設(shè),求的面積參考答案:解:(1)中,∵,∴∵,∴(2)由正弦定理得故∴略21.(本題滿(mǎn)分16分)如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900.M為AB的中點(diǎn)(1)求證:BC//平面PMD(2)求證:PC⊥BC;
(3)求點(diǎn)A到平面PBC的距離.參考答案:22.已知函數(shù)(a≠0)是奇函數(shù),并且函數(shù)f(x)的圖象經(jīng)過(guò)點(diǎn)(1,3),(1)求實(shí)數(shù)a,b的值;(2)求函數(shù)f(x)的值域.參考答案:【考點(diǎn)】奇函數(shù);函數(shù)的值域.【專(zhuān)題】常規(guī)題型;計(jì)算題.【分析】(1)由函數(shù)是奇函數(shù),和函數(shù)f(x)的圖象經(jīng)過(guò)點(diǎn)(1,3),建立方程求解.(2)由(1)知函數(shù)并轉(zhuǎn)化為,再分兩種情況,用基本不等式求解.【解答】解:(1)∵函數(shù)是奇函數(shù),則f(﹣
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版淋浴房定制設(shè)計(jì)與安裝全流程服務(wù)合同3篇
- 河南省周口市鄲城縣2024-2025學(xué)年九年級(jí)上學(xué)期期末考試英語(yǔ)試題(含答案含聽(tīng)力原文無(wú)音頻)
- 2025版土地承包經(jīng)營(yíng)權(quán)入股合作合同示范文本6篇
- 宗教音樂(lè)與音像制品的和諧共生考核試卷
- 二零二五年度物流裝備租賃合同模板
- “超級(jí)全能生”全國(guó)卷26省聯(lián)考高考語(yǔ)文試題(甲卷)(含答案)
- 二零二五年度木地板品牌授權(quán)區(qū)域代理合同4篇
- 2025年企業(yè)信息保密協(xié)議格式
- 2025年學(xué)校體育活動(dòng)協(xié)議
- 2025年學(xué)校食堂租賃協(xié)議
- 2024年社區(qū)警務(wù)規(guī)范考試題庫(kù)
- 2024年食用牛脂項(xiàng)目可行性研究報(bào)告
- 2024-2030年中國(guó)戶(hù)外音箱行業(yè)市場(chǎng)發(fā)展趨勢(shì)與前景展望戰(zhàn)略分析報(bào)告
- 家務(wù)分工與責(zé)任保證書(shū)
- 兒童尿道黏膜脫垂介紹演示培訓(xùn)課件
- 北京地鐵13號(hào)線
- 2023山東春季高考數(shù)學(xué)真題(含答案)
- 為加入燒火佬協(xié)會(huì)致辭(7篇)
- 職業(yè)衛(wèi)生法律法規(guī)和標(biāo)準(zhǔn)培訓(xùn)課件
- 高二下學(xué)期英語(yǔ)閱讀提升練習(xí)(二)
- 民事訴訟證據(jù)清單模板
評(píng)論
0/150
提交評(píng)論