2023-2024學(xué)年河南省平頂山市寶豐縣觀音堂初級(jí)中學(xué)中考五模數(shù)學(xué)試題含解析_第1頁
2023-2024學(xué)年河南省平頂山市寶豐縣觀音堂初級(jí)中學(xué)中考五模數(shù)學(xué)試題含解析_第2頁
2023-2024學(xué)年河南省平頂山市寶豐縣觀音堂初級(jí)中學(xué)中考五模數(shù)學(xué)試題含解析_第3頁
2023-2024學(xué)年河南省平頂山市寶豐縣觀音堂初級(jí)中學(xué)中考五模數(shù)學(xué)試題含解析_第4頁
2023-2024學(xué)年河南省平頂山市寶豐縣觀音堂初級(jí)中學(xué)中考五模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023-2024學(xué)年河南省平頂山市寶豐縣觀音堂初級(jí)中學(xué)中考五模數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.在Rt△ABC中,∠C=90°,AB=4,AC=1,則cosB的值為()A. B. C. D.2.如圖,l1∥l2,AF:FB=3:5,BC:CD=3:2,則AE:EC=()A.5:2 B.4:3 C.2:1 D.3:23.七年級(jí)1班甲、乙兩個(gè)小組的14名同學(xué)身高(單位:厘米)如下:甲組158159160160160161169乙組158159160161161163165以下敘述錯(cuò)誤的是()A.甲組同學(xué)身高的眾數(shù)是160B.乙組同學(xué)身高的中位數(shù)是161C.甲組同學(xué)身高的平均數(shù)是161D.兩組相比,乙組同學(xué)身高的方差大4.一個(gè)關(guān)于x的一元一次不等式組的解集在數(shù)軸上的表示如圖,則該不等式組的解集是()A.x>1 B.x≥1 C.x>3 D.x≥35.二次函數(shù)y=a(x﹣m)2﹣n的圖象如圖,則一次函數(shù)y=mx+n的圖象經(jīng)過()A.第一、二、三象限 B.第一、二、四象限C.第二、三、四象限 D.第一、三、四象限6.肥皂泡的泡壁厚度大約是0.00000071米,數(shù)字0.00000071用科學(xué)記數(shù)法表示為()A.7.1×107 B.0.71×10﹣6 C.7.1×10﹣7 D.71×10﹣87.若順次連接四邊形各邊中點(diǎn)所得的四邊形是菱形,則四邊形一定是()A.矩形 B.菱形C.對(duì)角線互相垂直的四邊形 D.對(duì)角線相等的四邊形8.一副直角三角板如圖放置,其中,,,點(diǎn)F在CB的延長(zhǎng)線上若,則等于()A.35° B.25° C.30° D.15°9.如圖,△ABC中,AB=4,BC=6,∠B=60°,將△ABC沿射線BC的方向平移,得到△A′B′C′,再將△A′B′C′繞點(diǎn)A′逆時(shí)針旋轉(zhuǎn)一定角度后,點(diǎn)B′恰好與點(diǎn)C重合,則平移的距離和旋轉(zhuǎn)角的度數(shù)分別為()A.4,30° B.2,60° C.1,30° D.3,60°10.若※是新規(guī)定的某種運(yùn)算符號(hào),設(shè)a※b=b2-a,則-2※x=6中x的值()A.4 B.8 C.2 D.-2二、填空題(共7小題,每小題3分,滿分21分)11.如圖,用10m長(zhǎng)的鐵絲網(wǎng)圍成一個(gè)一面靠墻的矩形養(yǎng)殖場(chǎng),其養(yǎng)殖場(chǎng)的最大面積________m1.12.如圖,在△ABC中,∠A=60°,若剪去∠A得到四邊形BCDE,則∠1+∠2=______.13.如果兩個(gè)相似三角形的面積的比是4:9,那么它們對(duì)應(yīng)的角平分線的比是_____.14.定義:直線l1與l2相交于點(diǎn)O,對(duì)于平面內(nèi)任意一點(diǎn)M,點(diǎn)M到直線l1,l2的距離分別為p、q,則稱有序?qū)崝?shù)對(duì)(p,q)是點(diǎn)M的“距離坐標(biāo)”.根據(jù)上述定義,“距離坐標(biāo)”是(1,2)的點(diǎn)的個(gè)數(shù)共有______個(gè).15.在平面直角坐標(biāo)系中,將點(diǎn)A(﹣3,2)向右平移3個(gè)單位長(zhǎng)度,再向下平移2個(gè)單位長(zhǎng)度,那么平移后對(duì)應(yīng)的點(diǎn)A′的坐標(biāo)是_____.16.已知:正方形ABCD.求作:正方形ABCD的外接圓.作法:如圖,(1)分別連接AC,BD,交于點(diǎn)O;(2)以點(diǎn)O為圓心,OA長(zhǎng)為半徑作⊙O,⊙O即為所求作的圓.請(qǐng)回答:該作圖的依據(jù)是__________________________________.17.如圖,在△ABC中,DE∥BC,EF∥AB.若AD=2BD,則的值等于_____三、解答題(共7小題,滿分69分)18.(10分)如圖1,已知拋物線y=﹣x2+x+與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,點(diǎn)D是點(diǎn)C關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn),連接CD,過點(diǎn)D作DH⊥x軸于點(diǎn)H,過點(diǎn)A作AE⊥AC交DH的延長(zhǎng)線于點(diǎn)E.(1)求線段DE的長(zhǎng)度;(2)如圖2,試在線段AE上找一點(diǎn)F,在線段DE上找一點(diǎn)P,且點(diǎn)M為直線PF上方拋物線上的一點(diǎn),求當(dāng)△CPF的周長(zhǎng)最小時(shí),△MPF面積的最大值是多少;(3)在(2)問的條件下,將得到的△CFP沿直線AE平移得到△C′F′P′,將△C′F′P′沿C′P′翻折得到△C′P′F″,記在平移過稱中,直線F′P′與x軸交于點(diǎn)K,則是否存在這樣的點(diǎn)K,使得△F′F″K為等腰三角形?若存在求出OK的值;若不存在,說明理由.19.(5分)計(jì)算:27﹣(﹣2)0+|1﹣3|+2cos30°.20.(8分)如圖,已知拋物線與x軸負(fù)半軸相交于點(diǎn)A,與y軸正半軸相交于點(diǎn)B,,直線l過A、B兩點(diǎn),點(diǎn)D為線段AB上一動(dòng)點(diǎn),過點(diǎn)D作軸于點(diǎn)C,交拋物線于點(diǎn)

E.(1)求拋物線的解析式;(2)若拋物線與x軸正半軸交于點(diǎn)F,設(shè)點(diǎn)D的橫坐標(biāo)為x,四邊形FAEB的面積為S,請(qǐng)寫出S與x的函數(shù)關(guān)系式,并判斷S是否存在最大值,如果存在,求出這個(gè)最大值;并寫出此時(shí)點(diǎn)E的坐標(biāo);如果不存在,請(qǐng)說明理由.(3)連接BE,是否存在點(diǎn)D,使得和相似?若存在,求出點(diǎn)D的坐標(biāo);若不存在,說明理由.21.(10分)如圖,四邊形AOBC是正方形,點(diǎn)C的坐標(biāo)是(4,0).正方形AOBC的邊長(zhǎng)為,點(diǎn)A的坐標(biāo)是.將正方形AOBC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)45°,點(diǎn)A,B,C旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)為A′,B′,C′,求點(diǎn)A′的坐標(biāo)及旋轉(zhuǎn)后的正方形與原正方形的重疊部分的面積;動(dòng)點(diǎn)P從點(diǎn)O出發(fā),沿折線OACB方向以1個(gè)單位/秒的速度勻速運(yùn)動(dòng),同時(shí),另一動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),沿折線OBCA方向以2個(gè)單位/秒的速度勻速運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒,當(dāng)它們相遇時(shí)同時(shí)停止運(yùn)動(dòng),當(dāng)△OPQ為等腰三角形時(shí),求出t的值(直接寫出結(jié)果即可).22.(10分)如圖,已知△ABC,請(qǐng)用尺規(guī)作圖,使得圓心到△ABC各邊距離相等(保留作圖痕跡,不寫作法).23.(12分)如圖,某高速公路建設(shè)中需要確定隧道AB的長(zhǎng)度.已知在離地面1500m高度C處的飛機(jī)上,測(cè)量人員測(cè)得正前方A、B兩點(diǎn)處的俯角分別為60°和45°.求隧道AB的長(zhǎng)(≈1.73).24.(14分)綜合與實(shí)踐﹣猜想、證明與拓廣問題情境:數(shù)學(xué)課上同學(xué)們探究正方形邊上的動(dòng)點(diǎn)引發(fā)的有關(guān)問題,如圖1,正方形ABCD中,點(diǎn)E是BC邊上的一點(diǎn),點(diǎn)D關(guān)于直線AE的對(duì)稱點(diǎn)為點(diǎn)F,直線DF交AB于點(diǎn)H,直線FB與直線AE交于點(diǎn)G,連接DG,CG.猜想證明(1)當(dāng)圖1中的點(diǎn)E與點(diǎn)B重合時(shí)得到圖2,此時(shí)點(diǎn)G也與點(diǎn)B重合,點(diǎn)H與點(diǎn)A重合.同學(xué)們發(fā)現(xiàn)線段GF與GD有確定的數(shù)量關(guān)系和位置關(guān)系,其結(jié)論為:;(2)希望小組的同學(xué)發(fā)現(xiàn),圖1中的點(diǎn)E在邊BC上運(yùn)動(dòng)時(shí),(1)中結(jié)論始終成立,為證明這兩個(gè)結(jié)論,同學(xué)們展開了討論:小敏:根據(jù)軸對(duì)稱的性質(zhì),很容易得到“GF與GD的數(shù)量關(guān)系”…小麗:連接AF,圖中出現(xiàn)新的等腰三角形,如△AFB,…小凱:不妨設(shè)圖中不斷變化的角∠BAF的度數(shù)為n,并設(shè)法用n表示圖中的一些角,可證明結(jié)論.請(qǐng)你參考同學(xué)們的思路,完成證明;(3)創(chuàng)新小組的同學(xué)在圖1中,發(fā)現(xiàn)線段CG∥DF,請(qǐng)你說明理由;聯(lián)系拓廣:(4)如圖3若將題中的“正方形ABCD”變?yōu)椤傲庑蜛BCD“,∠ABC=α,其余條件不變,請(qǐng)?zhí)骄俊螪FG的度數(shù),并直接寫出結(jié)果(用含α的式子表示).

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、A【解析】∵在Rt△ABC中,∠C=90°,AB=4,AC=1,∴BC==,則cosB==,故選A2、D【解析】

依據(jù)平行線分線段成比例定理,即可得到AG=3x,BD=5x,CD=BD=2x,再根據(jù)平行線分線段成比例定理,即可得出AE與EC的比值.【詳解】∵l1∥l2,∴,設(shè)AG=3x,BD=5x,∵BC:CD=3:2,∴CD=BD=2x,∵AG∥CD,∴.故選D.【點(diǎn)睛】本題考查了平行線分線段成比例:三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例.平行于三角形的一邊,并且和其他兩邊(或兩邊的延長(zhǎng)線)相交的直線,所截得的三角形的三邊與原三角形的三邊對(duì)應(yīng)成比例.3、D【解析】

根據(jù)眾數(shù)、中位數(shù)和平均數(shù)及方差的定義逐一判斷可得.【詳解】A.甲組同學(xué)身高的眾數(shù)是160,此選項(xiàng)正確;B.乙組同學(xué)身高的中位數(shù)是161,此選項(xiàng)正確;C.甲組同學(xué)身高的平均數(shù)是161,此選項(xiàng)正確;D.甲組的方差為,乙組的方差為,甲組的方差大,此選項(xiàng)錯(cuò)誤.故選D.【點(diǎn)睛】本題考查了眾數(shù)、中位數(shù)和平均數(shù)及方差,掌握眾數(shù)、中位數(shù)和平均數(shù)及方差的定義和計(jì)算公式是解題的關(guān)鍵.4、C【解析】試題解析:一個(gè)關(guān)于x的一元一次不等式組的解集在數(shù)軸上的表示如圖,則該不等式組的解集是x>1.故選C.考點(diǎn):在數(shù)軸上表示不等式的解集.5、A【解析】

由拋物線的頂點(diǎn)坐標(biāo)在第四象限可得出m>0,n>0,再利用一次函數(shù)圖象與系數(shù)的關(guān)系,即可得出一次函數(shù)y=mx+n的圖象經(jīng)過第一、二、三象限.【詳解】解:觀察函數(shù)圖象,可知:m>0,n>0,∴一次函數(shù)y=mx+n的圖象經(jīng)過第一、二、三象限.故選A.【點(diǎn)睛】本題考查了二次函數(shù)的圖象以及一次函數(shù)圖象與系數(shù)的關(guān)系,牢記“k>0,b>0?y=kx+b的圖象在一、二、三象限”是解題的關(guān)鍵.6、C【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).【詳解】0.00000071的小數(shù)點(diǎn)向或移動(dòng)7位得到7.1,所以0.00000071用科學(xué)記數(shù)法表示為7.1×10﹣7,故選C.【點(diǎn)睛】本題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.7、C【解析】【分析】如圖,根據(jù)三角形的中位線定理得到EH∥FG,EH=FG,EF=BD,則可得四邊形EFGH是平行四邊形,若平行四邊形EFGH是菱形,則可有EF=EH,由此即可得到答案.【點(diǎn)睛】如圖,∵E,F(xiàn),G,H分別是邊AD,DC,CB,AB的中點(diǎn),∴EH=AC,EH∥AC,F(xiàn)G=AC,F(xiàn)G∥AC,EF=BD,∴EH∥FG,EH=FG,∴四邊形EFGH是平行四邊形,假設(shè)AC=BD,∵EH=AC,EF=BD,則EF=EH,∴平行四邊形EFGH是菱形,即只有具備AC=BD即可推出四邊形是菱形,故選D.【點(diǎn)睛】本題考查了中點(diǎn)四邊形,涉及到菱形的判定,三角形的中位線定理,平行四邊形的判定等知識(shí),熟練掌握和靈活運(yùn)用相關(guān)性質(zhì)進(jìn)行推理是解此題的關(guān)鍵.8、D【解析】

直接利用三角板的特點(diǎn),結(jié)合平行線的性質(zhì)得出∠BDE=45°,進(jìn)而得出答案.【詳解】解:由題意可得:∠EDF=30°,∠ABC=45°,

∵DE∥CB,

∴∠BDE=∠ABC=45°,

∴∠BDF=45°-30°=15°.

故選D.【點(diǎn)睛】此題主要考查了平行線的性質(zhì),根據(jù)平行線的性質(zhì)得出∠BDE的度數(shù)是解題關(guān)鍵.9、B【解析】試題分析:∵∠B=60°,將△ABC沿射線BC的方向平移,得到△A′B′C′,再將△A′B′C′繞點(diǎn)A′逆時(shí)針旋轉(zhuǎn)一定角度后,點(diǎn)B′恰好與點(diǎn)C重合,∴∠A′B′C=60°,AB=A′B′=A′C=4,∴△A′B′C是等邊三角形,∴B′C=4,∠B′A′C=60°,∴BB′=6﹣4=2,∴平移的距離和旋轉(zhuǎn)角的度數(shù)分別為:2,60°故選B.考點(diǎn):1、平移的性質(zhì);2、旋轉(zhuǎn)的性質(zhì);3、等邊三角形的判定10、C【解析】解:由題意得:,∴,∴x=±1.故選C.二、填空題(共7小題,每小題3分,滿分21分)11、2【解析】設(shè)與墻平行的一邊長(zhǎng)為xm,則另一面為,其面積=,∴最大面積為;即最大面積是2m1.故答案是2.【點(diǎn)睛】求二次函數(shù)的最大(?。┲涤腥N方法,第一種可由圖象直接得出,第二種是配方法,第三種是公式法,常用的是后兩種方法,當(dāng)二次系數(shù)a的絕對(duì)值是較小的整數(shù)時(shí),用配方法較好,如y=-x1-1x+5,y=3x1-6x+1等用配方法求解比較簡(jiǎn)單.12、240.【解析】

試題分析:∠1+∠2=180°+60°=240°.考點(diǎn):1.三角形的外角性質(zhì);2.三角形內(nèi)角和定理.13、2:1【解析】先根據(jù)相似三角形面積的比是4:9,求出其相似比是2:1,再根據(jù)其對(duì)應(yīng)的角平分線的比等于相似比,可知它們對(duì)應(yīng)的角平分線比是2:1.故答案為2:1.點(diǎn)睛:本題考查的是相似三角形的性質(zhì),即相似三角形對(duì)應(yīng)邊的比、對(duì)應(yīng)高線的比、對(duì)應(yīng)角平分線的比、周長(zhǎng)的比都等于相似比;面積的比等于相似比的平方.14、4【解析】

根據(jù)“距離坐標(biāo)”和平面直角坐標(biāo)系的定義分別寫出各點(diǎn)即可.【詳解】距離坐標(biāo)是(1,2)的點(diǎn)有(1,2),(-1,2),(-1,-2),(1,-2)共四個(gè),所以答案填寫4.【點(diǎn)睛】本題考查了點(diǎn)的坐標(biāo),理解題意中距離坐標(biāo)是解題的關(guān)鍵.15、(0,0)【解析】

根據(jù)坐標(biāo)的平移規(guī)律解答即可.【詳解】將點(diǎn)A(-3,2)向右平移3個(gè)單位長(zhǎng)度,再向下平移2個(gè)單位長(zhǎng)度,那么平移后對(duì)應(yīng)的點(diǎn)A′的坐標(biāo)是(-3+3,2-2),即(0,0),故答案為(0,0).【點(diǎn)睛】此題主要考查坐標(biāo)與圖形變化-平移.平移中點(diǎn)的變化規(guī)律是:橫坐標(biāo)右移加,左移減;縱坐標(biāo)上移加,下移減.16、正方形的對(duì)角線相等且互相垂直平分;點(diǎn)到圓心的距離等于圓的半徑的點(diǎn)在這個(gè)圓上;四邊形的四個(gè)頂點(diǎn)在同一個(gè)圓上,這個(gè)圓叫四邊形的外接圓.【解析】

利用正方形的性質(zhì)得到OA=OB=OC=OD,則以點(diǎn)O為圓心,OA長(zhǎng)為半徑作⊙O,點(diǎn)B、C、D都在⊙O上,從而得到⊙O為正方形的外接圓.【詳解】∵四邊形ABCD為正方形,∴OA=OB=OC=OD,∴⊙O為正方形的外接圓.故答案為正方形的對(duì)角線相等且互相垂直平分;點(diǎn)到圓心的距離等于圓的半徑的點(diǎn)在這個(gè)圓上;四邊形的四個(gè)頂點(diǎn)在同一個(gè)圓上,這個(gè)圓叫四邊形的外接圓.【點(diǎn)睛】本題考查了作圖﹣復(fù)雜作圖:復(fù)雜作圖是在五種基本作圖的基礎(chǔ)上進(jìn)行作圖,一般是結(jié)合了幾何圖形的性質(zhì)和基本作圖方法.解決此類題目的關(guān)鍵是熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復(fù)雜作圖拆解成基本作圖,逐步操作.17、【解析】

根據(jù)平行線分線段成比例定理解答即可.【詳解】解:∵DE∥BC,AD=2BD,∴,∵EF∥AB,∴,故答案為.【點(diǎn)睛】本題考查了平行線分線段成比例:三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例.三、解答題(共7小題,滿分69分)18、(1)2;(2);(3)見解析.【解析】分析:(1)根據(jù)解析式求得C的坐標(biāo),進(jìn)而求得D的坐標(biāo),即可求得DH的長(zhǎng)度,令y=0,求得A,B的坐標(biāo),然后證得△ACO∽△EAH,根據(jù)對(duì)應(yīng)邊成比例求得EH的長(zhǎng),進(jìn)繼而求得DE的長(zhǎng);(2)找點(diǎn)C關(guān)于DE的對(duì)稱點(diǎn)N(4,),找點(diǎn)C關(guān)于AE的對(duì)稱點(diǎn)G(-2,-),連接GN,交AE于點(diǎn)F,交DE于點(diǎn)P,即G、F、P、N四點(diǎn)共線時(shí),△CPF周長(zhǎng)=CF+PF+CP=GF+PF+PN最小,根據(jù)點(diǎn)的坐標(biāo)求得直線GN的解析式:y=x-;直線AE的解析式:y=-x-,過點(diǎn)M作y軸的平行線交FH于點(diǎn)Q,設(shè)點(diǎn)M(m,-m2+m+),則Q(m,m-),根據(jù)S△MFP=S△MQF+S△MQP,得出S△MFP=-m2+m+,根據(jù)解析式即可求得,△MPF面積的最大值;(3)由(2)可知C(0,),F(xiàn)(0,),P(2,),求得CF=,CP=,進(jìn)而得出△CFP為等邊三角形,邊長(zhǎng)為,翻折之后形成邊長(zhǎng)為的菱形C′F′P′F″,且F′F″=4,然后分三種情況討論求得即可.本題解析:(1)對(duì)于拋物線y=﹣x2+x+,令x=0,得y=,即C(0,),D(2,),∴DH=,令y=0,即﹣x2+x+=0,得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),∵AE⊥AC,EH⊥AH,∴△ACO∽△EAH,∴=,即=,解得:EH=,則DE=2;(2)找點(diǎn)C關(guān)于DE的對(duì)稱點(diǎn)N(4,),找點(diǎn)C關(guān)于AE的對(duì)稱點(diǎn)G(﹣2,﹣),連接GN,交AE于點(diǎn)F,交DE于點(diǎn)P,即G、F、P、N四點(diǎn)共線時(shí),△CPF周長(zhǎng)=CF+PF+CP=GF+PF+PN最小,直線GN的解析式:y=x﹣;直線AE的解析式:y=﹣x﹣,聯(lián)立得:F(0,﹣),P(2,),過點(diǎn)M作y軸的平行線交FH于點(diǎn)Q,設(shè)點(diǎn)M(m,﹣m2+m+),則Q(m,m﹣),(0<m<2);∴S△MFP=S△MQF+S△MQP=MQ×2=MQ=﹣m2+m+,∵對(duì)稱軸為:直線m=<2,開口向下,∴m=時(shí),△MPF面積有最大值:;(3)由(2)可知C(0,),F(xiàn)(0,),P(2,),∴CF=,CP==,∵OC=,OA=1,∴∠OCA=30°,∵FC=FG,∴∠OCA=∠FGA=30°,∴∠CFP=60°,∴△CFP為等邊三角形,邊長(zhǎng)為,翻折之后形成邊長(zhǎng)為的菱形C′F′P′F″,且F′F″=4,1)當(dāng)KF′=KF″時(shí),如圖3,點(diǎn)K在F′F″的垂直平分線上,所以K與B重合,坐標(biāo)為(3,0),∴OK=3;2)當(dāng)F′F″=F′K時(shí),如圖4,∴F′F″=F′K=4,∵FP的解析式為:y=x﹣,∴在平移過程中,F(xiàn)′K與x軸的夾角為30°,∵∠OAF=30°,∴F′K=F′A∴AK=4∴OK=4﹣1或者4+1;3)當(dāng)F″F′=F″K時(shí),如圖5,∵在平移過程中,F(xiàn)″F′始終與x軸夾角為60°,∵∠OAF=30°,∴∠AF′F″=90°,∵F″F′=F″K=4,∴AF″=8,∴AK=12,∴OK=1,綜上所述:OK=3,4﹣1,4+1或者1.點(diǎn)睛:本題是二次函數(shù)的綜合題,考查了二次函數(shù)的交點(diǎn)和待定系數(shù)法求二次函數(shù)的解析式以及最值問題,考查了三角形相似的判定與性質(zhì),等邊三角形的判定與性質(zhì),等腰三角形的性質(zhì)等,分類討論的思想是解題的關(guān)鍵.19、53【解析】

(1)原式利用二次根式的性質(zhì),零指數(shù)冪法則,絕對(duì)值的代數(shù)意義,以及特殊角的三角函數(shù)值進(jìn)行化簡(jiǎn)即可得到結(jié)果.【詳解】原式=33=33=53【點(diǎn)睛】此題考查了實(shí)數(shù)的運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.20、(1);(2)與x的函數(shù)關(guān)系式為,S存在最大值,最大值為18,此時(shí)點(diǎn)E的坐標(biāo)為.(3)存在點(diǎn)D,使得和相似,此時(shí)點(diǎn)D的坐標(biāo)為或.【解析】

利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出點(diǎn)A、B的坐標(biāo),結(jié)合即可得出關(guān)于a的一元一次方程,解之即可得出結(jié)論;由點(diǎn)A、B的坐標(biāo)可得出直線AB的解析式待定系數(shù)法,由點(diǎn)D的橫坐標(biāo)可得出點(diǎn)D、E的坐標(biāo),進(jìn)而可得出DE的長(zhǎng)度,利用三角形的面積公式結(jié)合即可得出S關(guān)于x的函數(shù)關(guān)系式,再利用二次函數(shù)的性質(zhì)即可解決最值問題;由、,利用相似三角形的判定定理可得出:若要和相似,只需或,設(shè)點(diǎn)D的坐標(biāo)為,則點(diǎn)E的坐標(biāo)為,進(jìn)而可得出DE、BD的長(zhǎng)度當(dāng)時(shí),利用等腰直角三角形的性質(zhì)可得出,進(jìn)而可得出關(guān)于m的一元二次方程,解之取其非零值即可得出結(jié)論;當(dāng)時(shí),由點(diǎn)B的縱坐標(biāo)可得出點(diǎn)E的縱坐標(biāo)為4,結(jié)合點(diǎn)E的坐標(biāo)即可得出關(guān)于m的一元二次方程,解之取其非零值即可得出結(jié)論綜上即可得出結(jié)論.【詳解】當(dāng)時(shí),有,解得:,,點(diǎn)A的坐標(biāo)為.當(dāng)時(shí),,點(diǎn)B的坐標(biāo)為.,,解得:,拋物線的解析式為.點(diǎn)A的坐標(biāo)為,點(diǎn)B的坐標(biāo)為,直線AB的解析式為.點(diǎn)D的橫坐標(biāo)為x,則點(diǎn)D的坐標(biāo)為,點(diǎn)E的坐標(biāo)為,如圖.點(diǎn)F的坐標(biāo)為,點(diǎn)A的坐標(biāo)為,點(diǎn)B的坐標(biāo)為,,,,.,當(dāng)時(shí),S取最大值,最大值為18,此時(shí)點(diǎn)E的坐標(biāo)為,與x的函數(shù)關(guān)系式為,S存在最大值,最大值為18,此時(shí)點(diǎn)E的坐標(biāo)為.,,若要和相似,只需或如圖.設(shè)點(diǎn)D的坐標(biāo)為,則點(diǎn)E的坐標(biāo)為,,當(dāng)時(shí),,,,為等腰直角三角形.,即,解得:舍去,,點(diǎn)D的坐標(biāo)為;當(dāng)時(shí),點(diǎn)E的縱坐標(biāo)為4,,解得:,舍去,點(diǎn)D的坐標(biāo)為.綜上所述:存在點(diǎn)D,使得和相似,此時(shí)點(diǎn)D的坐標(biāo)為或.故答案為:(1);(2)與x的函數(shù)關(guān)系式為,S存在最大值,最大值為18,此時(shí)點(diǎn)E的坐標(biāo)為.(3)存在點(diǎn)D,使得和相似,此時(shí)點(diǎn)D的坐標(biāo)為或.【點(diǎn)睛】本題考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、三角形的面積、二次函數(shù)的性質(zhì)、相似三角形的判定、等腰直角三角形以及解一元二次方程,解題的關(guān)鍵是:利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征求出點(diǎn)A、B的坐標(biāo);利用三角形的面積找出S關(guān)于x的函數(shù)關(guān)系式;分及兩種情況求出點(diǎn)D的坐標(biāo).21、(1)4,;(2)旋轉(zhuǎn)后的正方形與原正方形的重疊部分的面積為;(3).【解析】

(1)連接AB,根據(jù)△OCA為等腰三角形可得AD=OD的長(zhǎng),從而得出點(diǎn)A的坐標(biāo),則得出正方形AOBC的面積;

(2)根據(jù)旋轉(zhuǎn)的性質(zhì)可得OA′的長(zhǎng),從而得出A′C,A′E,再求出面積即可;

(3)根據(jù)P、Q點(diǎn)在不同的線段上運(yùn)動(dòng)情況,可分為三種列式①當(dāng)點(diǎn)P、Q分別在OA、OB時(shí),②當(dāng)點(diǎn)P在OA上,點(diǎn)Q在BC上時(shí),③當(dāng)點(diǎn)P、Q在AC上時(shí),可方程得出t.【詳解】解:(1)連接AB,與OC交于點(diǎn)D,四邊形是正方形,

∴△OCA為等腰Rt△,∴AD=OD=OC=2,

∴點(diǎn)A的坐標(biāo)為.4,.(2)如圖∵四邊形是正方形,∴,.∵將正方形繞點(diǎn)順時(shí)針旋轉(zhuǎn),∴點(diǎn)落在軸上.∴.∴點(diǎn)的坐標(biāo)為.∵,∴.∵四邊形,是正方形,∴,.∴,.∴.∴.∵,,∴.∴旋轉(zhuǎn)后的正方形與原正方形的重疊部分的面積為.(3)設(shè)t秒后兩點(diǎn)相遇,3t=16,∴t=①當(dāng)點(diǎn)P、Q分別在OA、OB時(shí),∵,OP=t,OQ=2t∴不能為等腰三角形②當(dāng)點(diǎn)P在OA上,點(diǎn)Q在BC上時(shí)如圖2,當(dāng)OQ=QP,QM為OP的垂直平分線,

OP=2OM=2BQ,OP=t,BQ=2t-4,

t=2(2t-4),

解得:t=.③當(dāng)點(diǎn)P、Q在AC上時(shí),不能為等腰三角形綜上所述,當(dāng)時(shí)是等腰三角形【點(diǎn)睛】此題考查了正方形的性質(zhì),等腰三角形的判定以及旋轉(zhuǎn)的性質(zhì),是中考?jí)狠S題,綜合性較強(qiáng),難度較大.22、見解析【解析】

分別作∠ABC和∠ACB的平分線,它們的交點(diǎn)O滿足條件.【詳解】解:如圖,點(diǎn)O為所作.【點(diǎn)睛】本題考查了基本作圖:熟練掌握基本作圖(作一條線段等于已知線段;作一個(gè)角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過一點(diǎn)作已知直線的垂線).23、簡(jiǎn)答:∵OA,OB=OC=1500,∴AB=(m).答:隧道AB的長(zhǎng)約為635m.【解析】試題分析:首先過點(diǎn)C作CO⊥AB,根據(jù)Rt△AOC求出OA的長(zhǎng)度,根據(jù)Rt△CBO求出OB的長(zhǎng)度,然后進(jìn)行計(jì)算.試題解析:如圖,過點(diǎn)C作CO⊥直線AB,垂足為O,則CO="1500m"∵BC∥OB∴∠DCA=∠CAO=60°,∠DCB=∠CBO=45°∴在Rt△CAO中,OA=1500tan60°=1500×3在Rt△CBO中,OB=1500×tan45°=1500m∴AB=1500-5003≈1500-865=635(m)答:隧道AB的長(zhǎng)約為635m.考點(diǎn):銳角三角函數(shù)的應(yīng)用.24、(1)GF=GD,GF⊥GD;(2)見解析;(3)見解析;(4)90°﹣.【解析】

(1)根據(jù)四邊形ABCD是正方形可得∠ABD=∠ADB=45°,∠BAD=90°,點(diǎn)D關(guān)于直線AE的對(duì)稱點(diǎn)為點(diǎn)F,即可證明出∠DBF=90°,故GF⊥GD,再根據(jù)∠F=∠ADB,即可證明GF=GD;(2)連接AF,證明∠AFG=∠ADG,再根據(jù)四邊形ABCD是正方形,得出AB=AD,∠BAD=90°,設(shè)∠BAF=n,∠FAD=90°+n,可得出∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,故GF⊥GD;(3)連接BD,由(2)知,F(xiàn)G=DG,F(xiàn)G⊥DG,再分別求出∠GFD與∠DBC的角度,再根據(jù)三角函數(shù)的性質(zhì)可證明出△BDF∽△CDG,故∠DGC=∠FDG,則CG∥DF;(4)連接AF,BD,根據(jù)題意可證得∠DAM=90°﹣∠2=90°﹣∠1,∠DAF=2∠DAM=180°﹣2∠1,再根據(jù)菱形的性質(zhì)可得∠ADB=∠ABD=α,故∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論