版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
云南省開遠(yuǎn)一中2024屆高一下數(shù)學(xué)期末調(diào)研模擬試題考生請注意:1.答題前請將考場、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知實(shí)數(shù)x,y滿足約束條件y≤1x≤2x+2y-2≥0,則A.1 B.2 C.3 D.42.已知直線(3-2k)x-y-6=0不經(jīng)過第一象限,則k的取值范圍為()A.-∞,32 B.-∞,323.函數(shù)圖象的一條對稱軸在內(nèi),則滿足此條件的一個(gè)值為()A. B. C. D.4.在中,,則是()A.等邊三角形 B.直角三角形C.等腰三角形 D.等腰直角三角形5.一實(shí)體店主對某種產(chǎn)品的日銷售量(單位:件)進(jìn)行為期n天的數(shù)據(jù)統(tǒng)計(jì),得到如下統(tǒng)計(jì)圖,則下列說法錯(cuò)誤的是()A. B.中位數(shù)為17C.眾數(shù)為17 D.日銷售量不低于18的頻率為0.56.在銳角中,內(nèi)角,,的對邊分別為,,,若,則等于()A. B. C. D.7.已知是的邊上的中點(diǎn),若向量,,則向量等于()A. B. C. D.8.中,,則()A.5 B.6 C. D.89.已知等差數(shù)列和的前項(xiàng)和分別為和,.若,則的取值集合為()A. B.C. D.10.已知直線與圓相切,則的值是()A.1 B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在中,給出如下命題:①是所在平面內(nèi)一定點(diǎn),且滿足,則是的垂心;②是所在平面內(nèi)一定點(diǎn),動(dòng)點(diǎn)滿足,,則動(dòng)點(diǎn)一定過的重心;③是內(nèi)一定點(diǎn),且,則;④若且,則為等邊三角形,其中正確的命題為_____(將所有正確命題的序號(hào)都填上)12.在公差為的等差數(shù)列中,有性質(zhì):,根據(jù)上述性質(zhì),相應(yīng)地在公比為等比數(shù)列中,有性質(zhì):____________.13.設(shè)數(shù)列是首項(xiàng)為0的遞增數(shù)列,函數(shù)滿足:對于任意的實(shí)數(shù),總有兩個(gè)不同的根,則的通項(xiàng)公式是________.14.設(shè)數(shù)列()是等差數(shù)列,若和是方程的兩根,則數(shù)列的前2019項(xiàng)的和________15.下圖是2016年在巴西舉行的奧運(yùn)會(huì)上,七位評(píng)委為某體操運(yùn)動(dòng)員的單項(xiàng)比賽打出的分?jǐn)?shù)的莖葉統(tǒng)計(jì)圖,去掉一個(gè)最高分和一個(gè)最低分后,所剩數(shù)據(jù)的方差為__________.16.函數(shù)的最小正周期為________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知,,,均為銳角,且.(1)求的值;(2)若,求的值.18.在中,已知點(diǎn),邊上的中線所在直線的方程為,邊上的高所在直線的方程為.(1)求直線的方程;(2)求點(diǎn)的坐標(biāo).19.如圖,在平面直角坐標(biāo)系中,點(diǎn),,銳角的終邊與單位圓O交于點(diǎn)P.(Ⅰ)當(dāng)時(shí),求的值;(Ⅱ)在軸上是否存在定點(diǎn)M,使得恒成立?若存在,求出點(diǎn)M坐標(biāo);若不存在,說明理由.20.已知函數(shù),.(I)求函數(shù)的最小正周期.(II)求函數(shù)的單調(diào)遞增區(qū)間.(III)求函數(shù)在區(qū)間上的最小值和最大值.21.已知是同一平面內(nèi)的三個(gè)向量,其中為單位向量.(Ⅰ)若//,求的坐標(biāo);(Ⅱ)若與垂直,求與的夾角.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】
作出可行域,作直線l:x+y=0,平移直線l可得最優(yōu)解.【詳解】作出可行域,如圖ΔABC內(nèi)部(含邊界),作直線l:x+y=0,平移直線l,當(dāng)直線l過點(diǎn)C(2,1)時(shí),x+y=2+1=3為最大值.故選C.【點(diǎn)睛】本題考查簡單的線性規(guī)劃,解題關(guān)鍵是作出可行域.2、D【解析】
由題意可得3﹣2k=0或3﹣2k<0,解不等式即可得到所求范圍.【詳解】直線y=(3﹣2k)x﹣6不經(jīng)過第一象限,可得3﹣2k=0或3﹣2k<0,解得k≥3則k的取值范圍是[32故選:D.【點(diǎn)睛】本題考查直線方程的運(yùn)用,注意運(yùn)用直線的斜率為0的情況,考查運(yùn)算能力,屬于基礎(chǔ)題.3、A【解析】
求出函數(shù)的對稱軸方程,使得滿足在內(nèi),解不等式即可求出滿足此條件的一個(gè)φ值.【詳解】解:函數(shù)圖象的對稱軸方程為:xk∈Z,函數(shù)圖象的一條對稱軸在內(nèi),所以當(dāng)k=0時(shí),φ故選A.【點(diǎn)睛】本題是基礎(chǔ)題,考查三角函數(shù)的基本性質(zhì),不等式的解法,考查計(jì)算能力,能夠充分利用基本函數(shù)的性質(zhì)解題是學(xué)好數(shù)學(xué)的前提.4、C【解析】
由二倍角公式可得,,再根據(jù)誘導(dǎo)公式可得,然后利用兩角和與差的余弦公式,即可將化簡成,所以,即可求得答案.【詳解】因?yàn)?,,所以,,即,.故選:C.【點(diǎn)睛】本題主要考查利用二倍角公式,兩角和與差的余弦公式進(jìn)行三角恒等變換,意在考查學(xué)生的數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題.5、B【解析】
由統(tǒng)計(jì)圖,可計(jì)算出總數(shù)、中位數(shù)、眾數(shù),算得銷量不低于18件的天數(shù),即可求得頻率.【詳解】由統(tǒng)計(jì)圖可知,總數(shù),所以A正確;從統(tǒng)計(jì)圖可以看出,從小到大排列時(shí),中間兩天的銷售量的平均值為,所以B錯(cuò)誤;從統(tǒng)計(jì)圖可以看出,銷量最高的為17件,所以C正確;從統(tǒng)計(jì)圖可知,銷量不低于18的天數(shù)為,所以頻率為,所以D正確.綜上可知,錯(cuò)誤的為B故選:B【點(diǎn)睛】本題考查了統(tǒng)計(jì)中的總數(shù)、中位數(shù)、眾數(shù)和頻率的相關(guān)概念和性質(zhì),屬于基礎(chǔ)題.6、D【解析】
由正弦定理將邊化角可求得,根據(jù)三角形為銳角三角形可求得.【詳解】由正弦定理得:,即故選:【點(diǎn)睛】本題考查正弦定理邊化角的應(yīng)用問題,屬于基礎(chǔ)題.7、C【解析】
根據(jù)向量加法的平行四邊形法則,以及平行四邊形的性質(zhì)可得,,解出向量.【詳解】根據(jù)平行四邊形法則以及平行四邊形的性質(zhì),有.故選.【點(diǎn)睛】本題考查向量加法的平行四邊形法則以及平行四邊形的性質(zhì),意在考查學(xué)生對這些知識(shí)的理解掌握水平和分析推理能力.8、D【解析】
根據(jù)余弦定理,可求邊長.【詳解】,代入數(shù)據(jù),化解為解得或(舍)故選D.【點(diǎn)睛】本題考查了已知兩邊及其一邊所對角,求另一邊,這種題型用余弦定理,屬于基礎(chǔ)題型.9、D【解析】
首先根據(jù)即可得出,再根據(jù)前n項(xiàng)的公式計(jì)算出即可?!驹斀狻?,選D.【點(diǎn)睛】本題主要考查等差數(shù)列的求和公式及等差數(shù)列的性質(zhì),屬于難題.等差數(shù)列的常用性質(zhì)有:(1)通項(xiàng)公式的推廣:
(2)若
為等差數(shù)列,
;(3)若是等差數(shù)列,公差為,
,則是公差
的等差數(shù)列;10、D【解析】
利用直線與圓相切的條件列方程求解.【詳解】因?yàn)橹本€與圓相切,所以,,,故選D.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系,通常利用圓心到直線的距離與圓的半徑的大小關(guān)系進(jìn)行判斷,考查運(yùn)算能力,屬于基本題.二、填空題:本大題共6小題,每小題5分,共30分。11、①②④.【解析】
①:運(yùn)用已知的式子進(jìn)行合理的變形,可以得到,進(jìn)而得到,再次運(yùn)用等式同樣可以得到,,這樣可以證明出是的垂心;②:運(yùn)用平面向量的減法的運(yùn)算法則、加法的幾何意義,結(jié)合平面向量共線定理,可以證明本命題是真命題;③:運(yùn)用平面向量的加法的幾何意義以及平面向量共線定理,結(jié)合面積公式,可證明出本結(jié)論是錯(cuò)誤的;④:運(yùn)用平面向量的加法幾何意義和平面向量的數(shù)量積的定義,可以證明出本結(jié)論是正確的.【詳解】①:,同理可得:,,所以本命題是真命題;②:,設(shè)的中點(diǎn)為,所以有,因此動(dòng)點(diǎn)一定過的重心,故本命題是真命題;③:由,可得設(shè)的中點(diǎn)為,,,故本命題是假命題;④:由可知角的平分線垂直于底邊,故是等腰三角形,由可知:,所以是等邊三角形,故本命題是真命題,因此正確的命題為①②④.【點(diǎn)睛】本題考查了平面向量的加法的幾何意義和平面向量數(shù)量積的運(yùn)算,考查了數(shù)形結(jié)合思想.12、【解析】
根據(jù)題中條件,類比等差數(shù)列的性質(zhì),可直接得出結(jié)果.【詳解】因?yàn)樵诠顬榈牡炔顢?shù)列中,有性質(zhì):,類比等差數(shù)列的性質(zhì),可得:在公比為等比數(shù)列中,故答案為:【點(diǎn)睛】本題主要考查類比推理,只需根據(jù)題中條件,結(jié)合等差數(shù)列與等比數(shù)列的特征,即可得出結(jié)果,屬于常考題型.13、【解析】
利用三角函數(shù)的圖象與性質(zhì)、誘導(dǎo)公式和數(shù)列的遞推公式,可得,再利用“累加”法和等差數(shù)列的前n項(xiàng)和公式,即可求解.【詳解】由題意,因?yàn)椋?dāng)時(shí),,又因?yàn)閷θ我獾膶?shí)數(shù),總有兩個(gè)不同的根,所以,所以,又,對任意的實(shí)數(shù),總有兩個(gè)不同的根,所以,又,對任意的實(shí)數(shù),總有兩個(gè)不同的根,所以,由此可得,所以,所以.故答案為:.【點(diǎn)睛】本題主要考查了三角函數(shù)的圖象與性質(zhì)的應(yīng)用,以及誘導(dǎo)公式,數(shù)列的遞推關(guān)系式和“累加”方法等知識(shí)的綜合應(yīng)用,著重考查了推理與運(yùn)算能力,屬于中檔試題.14、2019【解析】
根據(jù)二次方程根與系數(shù)的關(guān)系得出,再利用等差數(shù)列下標(biāo)和的性質(zhì)得到,然后利用等差數(shù)列求和公式可得出答案.【詳解】由二次方程根與系數(shù)的關(guān)系可得,由等差數(shù)列的性質(zhì)得出,因此,等差數(shù)列的前項(xiàng)的和為,故答案為.【點(diǎn)睛】本題考查等差數(shù)列的性質(zhì)與等差數(shù)列求和公式的應(yīng)用,涉及二次方程根與系數(shù)的關(guān)系,解題的關(guān)鍵在于等差數(shù)列性質(zhì)的應(yīng)用,屬于中等題.15、【解析】由平均數(shù)公式可得,故所求數(shù)據(jù)的方差是,應(yīng)填答案。16、.【解析】
根據(jù)正切型函數(shù)的周期公式可計(jì)算出函數(shù)的最小正周期.【詳解】由正切型函數(shù)的周期公式得,因此,函數(shù)的最小正周期為,故答案為.【點(diǎn)睛】本題考查正切型函數(shù)周期的求解,解題的關(guān)鍵在于正切型函數(shù)周期公式的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)計(jì)算表達(dá)出,再根據(jù),兩邊平方求化簡即可求得.(2)根據(jù),再利用余弦的差角公式展開后分別計(jì)算求解即可.【詳解】(1)由題意,得,,,,.(2),,均為銳角,仍為銳角,,,.【點(diǎn)睛】本題主要考查了根據(jù)向量的數(shù)量積列出關(guān)于三角函數(shù)的等式,再利用三角函數(shù)中的和差角以及湊角求解的方法.屬于中檔題.18、(1)(2)【解析】
(1)先計(jì)算,過點(diǎn),得到答案.(2)聯(lián)立直線方程:解得答案.【詳解】解:(1)由邊上的高所在直線方程為得,則.又∵,∴直線的方程為,即(或).(2)因?yàn)檫吷系闹芯€過點(diǎn),則聯(lián)立直線方程:.解得:,即點(diǎn)坐標(biāo)為.【點(diǎn)睛】本題考查了直線方程,意在考查學(xué)生的計(jì)算能力.19、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)設(shè)點(diǎn),求得向量的坐標(biāo),根據(jù)向量的數(shù)量積的運(yùn)算,求得,即可求得答案.(Ⅱ)設(shè)M點(diǎn)的坐標(biāo)為,把恒成立問題轉(zhuǎn)化為恒成立,列出方程組,即可求解.【詳解】(Ⅰ),,(Ⅱ)設(shè)M點(diǎn)的坐標(biāo)為,則,,,.【點(diǎn)睛】本題主要考查了向量的坐標(biāo)運(yùn)算,以及向量的數(shù)量積的應(yīng)用和恒成立問題的求解,其中解答中合理利用向量的坐標(biāo)運(yùn)算及向量的數(shù)量積的運(yùn)算,以及轉(zhuǎn)化等式的恒成立問題,列出相應(yīng)的方程組是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力.20、(I)的最小正周期;(II)的單調(diào)遞增區(qū)間為;(III);【解析】試題分析;(1)化函數(shù)f(x)為正弦型函數(shù),求出f(x)的最小正周期;(2)根據(jù)正弦函數(shù)的單調(diào)性求出f(x)的單調(diào)增區(qū)間;(3)根據(jù)x的取值范圍求出2x+的取值范圍,從而求出f(x)的最值(I)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年安徽省安糧集團(tuán)有限公司招聘筆試參考題庫含答案解析
- 2025年江西省投資集團(tuán)有限公司招聘筆試參考題庫含答案解析
- 2025年中國石油廣西石化分公司招聘筆試參考題庫含答案解析
- 2025版軍人離婚協(xié)議書范本:軍人轉(zhuǎn)業(yè)后住房安置問題3篇
- 2025年度智能機(jī)器人暗股投資合作協(xié)議書3篇
- 2024馬戲團(tuán)特色動(dòng)物表演合同協(xié)議6篇
- 威海市文登區(qū)屬事業(yè)單位綜合類崗位公開招考工作人員高頻重點(diǎn)提升(共500題)附帶答案詳解
- 大連銀行博士后科研工作站2025年招考高頻重點(diǎn)提升(共500題)附帶答案詳解
- 二零二五年度環(huán)??萍脊竟蓹?quán)轉(zhuǎn)讓與污染治理合同3篇
- 國網(wǎng)江蘇省電力限公司2025年招聘高校畢業(yè)生(第一批)高頻重點(diǎn)提升(共500題)附帶答案詳解
- 人教版2024-2025學(xué)年八年級(jí)上學(xué)期數(shù)學(xué)14.3因式分解同步練習(xí)基礎(chǔ)卷(含答案)
- 物流倉庫安全生產(chǎn)
- 保險(xiǎn)公司廉政風(fēng)險(xiǎn)防控制度
- 2024年職工職業(yè)技能大賽數(shù)控銑工賽項(xiàng)理論考試題庫-下(多選、判斷題)
- DB34T4868-2024智慧醫(yī)院醫(yī)用耗材院內(nèi)物流規(guī)范
- 防高墜安全警示培訓(xùn)
- 初二數(shù)學(xué)幾何試題(含答案)
- 人教部編版七年級(jí)語文上冊《閱讀綜合實(shí)踐》示范課教學(xué)設(shè)計(jì)
- 2024年浙江嘉興市眾業(yè)供電服務(wù)限公司招聘38人高頻500題難、易錯(cuò)點(diǎn)模擬試題附帶答案詳解
- 初中英語聽課記錄全集
- 課堂小游戲教學(xué)游戲互動(dòng)砸金蛋
評(píng)論
0/150
提交評(píng)論