版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學年河南省信陽市達權(quán)店高級中學高一下數(shù)學期末學業(yè)質(zhì)量監(jiān)測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.一支田徑隊有男運動員560人,女運動員420人,為了解運動員的健康情況,從男運動員中任意抽取16人,從女生中任意抽取12人進行調(diào)查.這種抽樣方法是()A.簡單隨機抽樣法 B.抽簽法C.隨機數(shù)表法 D.分層抽樣法2.用輾轉(zhuǎn)相除法,計算56和264的最大公約數(shù)是().A.7 B.8 C.9 D.63.邊長為2的正方形內(nèi)有一封閉曲線圍成的陰影區(qū)域.向正方形中隨機地撒200粒芝麻,大約有80粒落在陰影區(qū)域內(nèi),則此陰影區(qū)域的面積約為()A. B. C. D.4.已知x,y滿足約束條件,則的最大值是()A.-1 B.-2 C.-5 D.15.已知,,,則()A. B. C.-7 D.76.已知數(shù)列的前項為和,且,則()A.5 B. C. D.97.已知向量,滿足,在上的投影(正射影的數(shù)量)為-2,則的最小值為()A. B.10 C. D.88.下圖是某圓拱形橋一孔圓拱的示意圖,這個圓的圓拱跨度米,拱高米,建造時每隔8米需要用一根支柱支撐,則支柱的高度大約是()A.9.7米 B.9.1米 C.8.7米 D.8.1米9.已知集合,集合,則()A. B. C. D.10.己知某三棱錐的三視圖如圖所示,其中正視圖和側(cè)視圖都是邊長為2的等邊三角形,則該三棱錐的體積為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在上定義運算,則不等式的解集為_____.12.在中,已知,,,則角__________.13.函數(shù)的最小正周期是____.14.隨機抽取100名年齡在[10,20),[20,30),…,[50,60)年齡段的市民進行問卷調(diào)查,由此得到樣本的頻率分布直方圖如圖所示.從不小于40歲的人中按年齡段分層抽樣的方法隨機抽取12人,則在[50,60)年齡段抽取的人數(shù)為______.15.函數(shù)的零點個數(shù)為__________.16.在正方體中,是棱的中點,則異面直線與所成角的余弦值為__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.將函數(shù)的圖象向右平移個單位長度,再把所得圖象上所有點的橫坐標伸長到原來的2倍,縱坐標不變,可以得到函數(shù)的圖象.(1)求函數(shù)的單調(diào)遞增區(qū)間;(2)若,,求值.18.已知函數(shù)f(x)=x2+(x-1)|x-a|.(1)若a=-1,解方程f(x)=1;(2)若函數(shù)f(x)在R上單調(diào)遞增,求實數(shù)a的取值范圍;(3)是否存在實數(shù)a,使不等式f(x)≥2x-3對任意x∈R恒成立?若存在,求出a的取值范圍;若不存在,請說明理由.19.已知數(shù)列滿足且,設(shè),.(1)求;(2)求的通項公式;(3)求.20.在城市舊城改造中,某小區(qū)為了升級居住環(huán)境,擬在小區(qū)的閑置地中規(guī)劃一個面積為的矩形區(qū)域(如圖所示),按規(guī)劃要求:在矩形內(nèi)的四周安排寬的綠化,綠化造價為200元/,中間區(qū)域地面硬化以方便后期放置各類健身器材,硬化造價為100元/.設(shè)矩形的長為.(1)設(shè)總造價(元)表示為長度的函數(shù);(2)當取何值時,總造價最低,并求出最低總造價.21.共享單車是指由企業(yè)在校園、公交站點、商業(yè)區(qū)、公共服務區(qū)等場所提供的自行車單車共享服務,由于其依托“互聯(lián)網(wǎng)+”,符合“低碳出行”的理念,已越來越多地引起了人們的關(guān)注.某部門為了對該城市共享單車加強監(jiān)管,隨機選取了50人就該城市共享單車的推行情況進行問卷調(diào)査,并將問卷中的這50人根據(jù)其滿意度評分值(百分制)按照分成5組,請根據(jù)下面尚未完成并有局部污損的頻率分布表和頻率分布直方圖(如圖所示)解決下列問題:頻率分布表組別分組頻數(shù)頻率第1組80.16第2組▆第3組200.40第4組▆0.08第5組2合計▆▆(1)求的值;(2)若在滿意度評分值為的人中隨機抽取2人進行座談,求所抽取的2人中至少一人來自第5組的概率.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
若總體由差異明顯的幾部分組成時,經(jīng)常采用分層抽樣的方法進行抽樣【詳解】總體由男生和女生組成,比例為560:420=4:1,所抽取的比例也是16:12=4:1.故選D.【點睛】本小題主要考查抽樣方法,當總體由差異明顯的幾部分組成時,經(jīng)常采用分層抽樣的方法進行抽樣,屬基本題.2、B【解析】
根據(jù)輾轉(zhuǎn)相除法計算最大公約數(shù).【詳解】因為所以最大公約數(shù)是8,選B.【點睛】本題考查輾轉(zhuǎn)相除法,考查基本求解能力.3、B【解析】
依題意得,豆子落在陰影區(qū)域內(nèi)的概率等于陰影部分面積與正方形面積之比,即可求出結(jié)果.【詳解】設(shè)陰影區(qū)域的面積為,由題意可得,則.故選:B.【點睛】本題考查隨機模擬實驗,根據(jù)幾何概型的意義進行模擬實驗計算陰影部分面積,關(guān)鍵在于掌握幾何概型的計算公式.4、A【解析】根據(jù)題意作出約束條件確定的可行域,如下圖:令,可知在圖中處,取到最大值-1,故選A.考點:本題主要考查了簡單的線性規(guī)劃.5、C【解析】
把已知等式平方后可求得.【詳解】∵,∴,即,,∵,∴,∴,,∴.故選C.【點睛】本題考查同角間的三角函數(shù)關(guān)系,考查兩角和的正切公式,解題關(guān)鍵是把已知等式平方,并把1用代替,以求得.6、D【解析】
先根據(jù)已知求出數(shù)列的通項,再求解.【詳解】當時,,可得;當且時,,得,故數(shù)列為等比數(shù)列,首項為4,公比為2.所以所以.故選D【點睛】本題主要考查項和公式求數(shù)列通項,考查等比數(shù)列的通項的求法,意在考查學生對這些知識的理解掌握水平,屬于基礎(chǔ)題.7、D【解析】
在上的投影(正射影的數(shù)量)為可知,可求出,求的最小值即可得出結(jié)果.【詳解】因為在上的投影(正射影的數(shù)量)為,所以,即,而,所以,因為所以,即,故選D.【點睛】本題主要考查了向量在向量上的正射影,向量的數(shù)量積,屬于難題.8、A【解析】
以為原點、以為軸,以為軸建立平面直角坐標系,設(shè)出圓心坐標與半徑,可得圓拱所在圓的方程,將代入圓的方程,可求出支柱的高度【詳解】由圖以為原點、以為軸,以為軸建立平面直角坐標系,設(shè)圓心坐標為,,,則圓拱所在圓的方程為,,解得,,圓的方程為,將代入圓的方程,得.故選:A【點睛】本題考查了圓的標準方程在生活中的應用,需熟記圓的標準方程的形式,屬于基礎(chǔ)題.9、D【解析】
先化簡集合,再利用交集運算法則求.【詳解】,,,故選:D.【點睛】本題考查集合的運算,屬于基礎(chǔ)題.10、B【解析】
先找到三視圖對應的幾何體原圖,再求幾何體的體積.【詳解】由題得三視圖對應的幾何體原圖是如圖所示的三棱錐A-BCD,所以幾何體的體積為.故選B【點睛】本題主要考查三視圖找到幾何體原圖,考查三棱錐體積的計算,意在考查學生對這些知識的理解掌握水平,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)定義運算,把化簡得,求出其解集即可.【詳解】因為,所以,即,得,解得:故答案為:.【點睛】本題考查新定義,以及解一元二次不等式,考查運算的能力,屬于基礎(chǔ)題.12、【解析】
先由正弦定理得到角A的大小,再由三角形內(nèi)角和為得到結(jié)果.【詳解】根據(jù)三角形正弦定理得到:,故得到或,因為故得到故答案為.【點睛】在解與三角形有關(guān)的問題時,正弦定理、余弦定理是兩個主要依據(jù).解三角形時,有時可用正弦定理,有時也可用余弦定理,應注意用哪一個定理更方便、簡捷一般來說,當條件中同時出現(xiàn)及、時,往往用余弦定理,而題設(shè)中如果邊和正弦、余弦函數(shù)交叉出現(xiàn)時,往往運用正弦定理將邊化為正弦函數(shù)再結(jié)合和、差、倍角的正余弦公式進行解答.13、【解析】
將三角函數(shù)化簡為標準形式,再利用周期公式得到答案.【詳解】由于所以【點睛】本題考查了三角函數(shù)的化簡,周期公式,屬于簡單題.14、3【解析】
根據(jù)頻率分布直方圖,求得不小于40歲的人的頻率及人數(shù),再利用分層抽樣的方法,即可求解,得到答案.【詳解】根據(jù)頻率分布直方圖,得樣本中不小于40歲的人的頻率是0.015×10+0.005×10=0.2,所以不小于40歲的人的頻數(shù)是100×0.2=20;從不小于40歲的人中按年齡段分層抽樣的方法隨機抽取12人,在[50,60)年齡段抽取的人數(shù)為.【點睛】本題主要考查了頻率分布直方圖的應用,其中解答中熟記頻率分布直方圖的性質(zhì),以及頻率分布直方圖中概率的計算方法是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.15、3【解析】
運用三角函數(shù)的誘導公式先將函數(shù)化簡,再在同一直角坐標系中做出兩支函數(shù)的圖像,觀察其交點的個數(shù)即得解.【詳解】由三角函數(shù)的誘導公式得,所以令,求零點的個數(shù)轉(zhuǎn)化求方程根的個數(shù),因此在同一直角坐標系分別做出和的圖象,觀察兩支圖象的交點的個數(shù)為個,注意在做的圖像時當時,,故得解.【點睛】本題考查三角函數(shù)的有界性和余弦函數(shù)與對數(shù)函數(shù)的交點情況,屬于中檔題.16、【解析】
假設(shè)正方體棱長,根據(jù)//,得到異面直線與所成角,計算,可得結(jié)果.【詳解】假設(shè)正方體棱長為1,因為//,所以異面直線與所成角即與所成角則角為如圖,所以故答案為:【點睛】本題考查異面直線所成的角,屬基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)由的橫坐標縮小為原來的,向左平移個單位長度,可得函數(shù),令,解不等式即可求得本題答案;(2)由,可得,又由,即可得到本題答案.【詳解】解:(1)由題意,得令,解得所以,函數(shù)的單調(diào)遞增區(qū)間為:(2),,又,得,由,得,.【點睛】本題主要考查三角函數(shù)的伸縮平移,三角函數(shù)的圖象與性質(zhì)以及利用和差公式求值.18、(1){x|x≤-1或x=1};(2);(3).【解析】試題分析:(1)把代入函數(shù)解析式,分段后分段求解方程的解集,取并集后得答案;(2)分段寫出函數(shù)的解析式,由在上單調(diào)遞增,則需第一段二次函數(shù)的對稱軸小于等于,第二段一次函數(shù)的一次項系數(shù)大于0,且第二段函數(shù)的最大值小于等于第一段函數(shù)的最小值,聯(lián)立不等式組后求解的取值范圍;(3)把不等式對一切實數(shù)恒成立轉(zhuǎn)化為函數(shù)對一切實數(shù)恒成立,然后對進行分類討論,利用函數(shù)單調(diào)性求得的范圍,取并集后得答案.試題解析:(1)當時,,則;當時,由,得,解得或;當時,恒成立,∴方程的解集為或.(2)由題意知,若在R上單調(diào)遞增,則解得,∴實數(shù)的取值范圍為.(3)設(shè),則,不等式對任意恒成立,等價于不等式對任意恒成立.①若,則,即,取,此時,∴,即對任意的,總能找到,使得,∴不存在,使得恒成立.②若,則,∴的值域為,∴恒成立③若,當時,單調(diào)遞減,其值域為,由于,所以恒成立,當時,由,知,在處取得最小值,令,得,又,∴,綜上,.19、(1),,,;(1),;(3).【解析】
(1)依次代入計算,可求得;(1)歸納出,并用數(shù)學歸納法證明;(3)用裂項相消法求和,然后求極限.【詳解】(1)∵且,∴,即,,,,,,,,,∴;(1)由(1)歸納:,下面用數(shù)學歸納法證明:1°n=1,n=1時,由(1)知成立,1°假設(shè)n=k(k>1)時,結(jié)論成立,即bk=1k1,則n=k+1時,ak=bk-k=1k1-k,,ak+1=(1k+1)(k+1),∴bk+1=ak+1+(k+1)=(1k+1)(k+1)+(k+1)=1(k+1)1,∴n=k+1時結(jié)論成立,∴對所有正整數(shù)n,bn=1n1.(3)由(1)知n1時,,∴,.【點睛】本題考查用歸納法求數(shù)列的通項公式,考查用裂項相消法求數(shù)列的和,考查數(shù)列的極限.在求數(shù)列通項公式時,可以根據(jù)已知的遞推關(guān)系求出數(shù)列的前幾項,然后歸納出通項公式,并用數(shù)學歸納法證明,這對學生的歸納推理能力有一定的要求,這也就是我們平常所學的從特殊到一般的推理方法.20、(1),(2)當時,總造價最低為元【解析】
(1)根據(jù)題意得矩形的長為,則矩形的寬為,中間區(qū)域的長為,寬為列出函數(shù)即可.(2)根據(jù)(1)的結(jié)果利用基本不等式即可.【詳解】(1)由矩形的長為,則矩形的寬為,則中間區(qū)域的長為,寬為,則定義域為則整理得,(2)當且僅當時取等號,即所以當時,總造價最低為元【點睛】本題主要考查了函數(shù)的表示方法,以及基本不等式的應用.在利用基本不等式時保證一正二定三相等,屬于中等題.21、(1);(2).【解析】
(1)根據(jù)頻率分布表可得b.先求得內(nèi)的頻數(shù),即可由總數(shù)減去其余部分求得.結(jié)合頻率分布直方圖,即可求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度國際船舶租賃海運貨物運輸合同示范文本
- 2025年度宗教活動場地租賃服務合同(含宗教儀式安排)
- 二零二四微商代理合作收益分成合同范本3篇
- 二零二四年實驗室耗材綠色采購與環(huán)保認證合同2篇
- 2025年度航空旅客運輸合同行李托運條款
- 人員擴充補充合同模板(2024年版)版B版
- 2025年度股權(quán)質(zhì)押合同爭議解決機制優(yōu)化合同
- 2025年度自動駕駛技術(shù)研發(fā)合作合同范本-@-1
- 二零二五年度住宅小區(qū)物業(yè)托管承包合同2篇
- 二零二四年金融機構(gòu)貸款合同
- 《中國心力衰竭診斷和治療指南(2024)》解讀完整版
- 抽水蓄能電站項目建設(shè)管理方案
- 《智能網(wǎng)聯(lián)汽車智能傳感器測試與裝調(diào)》電子教案
- GB/T 32399-2024信息技術(shù)云計算參考架構(gòu)
- 五級人工智能訓練師(初級)職業(yè)技能等級認定考試題庫(含答案)
- 2022年內(nèi)蒙古呼和浩特市中考化學真題(解析版)
- 2024PowerTitan系列運維指導儲能系統(tǒng)運維指導
- 沸石轉(zhuǎn)輪知識講解
- 固定資產(chǎn)盤點報告醫(yī)院版
- 腫瘤患者全程管理
- DB13(J)T145-2012建筑工程資料管理規(guī)程(上冊)
評論
0/150
提交評論