內(nèi)蒙古包頭市北方重工集團三中2024屆數(shù)學(xué)高一下期末監(jiān)測試題含解析_第1頁
內(nèi)蒙古包頭市北方重工集團三中2024屆數(shù)學(xué)高一下期末監(jiān)測試題含解析_第2頁
內(nèi)蒙古包頭市北方重工集團三中2024屆數(shù)學(xué)高一下期末監(jiān)測試題含解析_第3頁
內(nèi)蒙古包頭市北方重工集團三中2024屆數(shù)學(xué)高一下期末監(jiān)測試題含解析_第4頁
內(nèi)蒙古包頭市北方重工集團三中2024屆數(shù)學(xué)高一下期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

內(nèi)蒙古包頭市北方重工集團三中2024屆數(shù)學(xué)高一下期末監(jiān)測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中,角,,所對的邊分別為,,,,的平分線交于點,且,則的最小值為()A.8 B.9 C.10 D.72.若某市所中學(xué)參加中學(xué)生合唱比賽的得分用莖葉圖表示(如圖),其中莖為十位數(shù),葉為個位數(shù),則這組數(shù)據(jù)的中位數(shù)是()A.91 B.91.5C.92 D.92.53.函數(shù)的最大值為()A. B. C. D.4.如圖所示,它是由3個全等的三角形與中間的一個小等邊三角形拼成的一個大等邊三角形,設(shè),若在大等邊三角形中隨機取一點,則此點取自小等邊三角形的概率是()A. B. C. D.5.在中,內(nèi)角A,B,C的對邊分別為a,b,c,若a,b,c依次成等差數(shù)列,,,依次成等比數(shù)列,則的形狀為()A.等邊三角形 B.等腰直角三角形C.鈍角三角形 D.直角邊不相等的直角三角形6.下列函數(shù)中,既是偶函數(shù)又在區(qū)間上單調(diào)遞減的是(

)A. B. C. D.7.如直線與平行但不重合,則的值為().A.或2 B.2 C. D.8.已知無窮等比數(shù)列的公比為,前項和為,且,下列條件中,使得恒成立的是()A., B.,C., D.,9.在△ABC中,D是邊BC的中點,則=A. B. C. D.10.已知點和點,是直線上的一點,則的最小值是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知單位向量與的夾角為,且,向量與的夾角為,則=.12.用秦九韶算法求多項式當(dāng)時的值的過程中:,__.13.平面四邊形中,,則=_______.14.已知三個頂點的坐標(biāo)分別為,若⊥,則的值是______.15.已知圓的圓心在直線,與y軸相切,且被直線截得的弦長為,則圓C的標(biāo)準(zhǔn)方程為________.16.5人排成一行合影,甲和乙不相鄰的排法有______種.(用數(shù)字回答)三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.針對國家提出的延遲退休方案,某機構(gòu)進行了網(wǎng)上調(diào)查,所有參與調(diào)查的人中,持“支持”、“保留”和“不支持”態(tài)度的人數(shù)如下表所示:支持保留不支持歲以下歲以上(含歲)(1)在所有參與調(diào)查的人中,用分層抽樣的方法抽取個人,已知從持“不支持”態(tài)度的人中抽取了人,求的值;(2)在接受調(diào)查的人中,有人給這項活動打出的分數(shù)如下:,,,,,,,,,,把這個人打出的分數(shù)看作一個總體,從中任取一個數(shù),求該數(shù)與總體平均數(shù)之差的絕對值超過的概率.18.將正弦曲線如何變換可以得到函數(shù)的圖像,請寫出變換過程,并畫出一個周期的閉區(qū)間的函數(shù)簡圖.19.已知函數(shù)滿足.(1)若,對任意都有,求的取值范圍;(2)是否存在實數(shù),,使得不等式對一切實數(shù)恒成立?若存在,請求出,,使;若不存在,請說明理由.20.制訂投資計劃時,不僅要考慮可能獲得的盈利,而且要考慮可能出現(xiàn)的虧損.某投資人打算投資甲、乙兩個項目.根據(jù)預(yù)測,甲、乙項目可能的最大盈利分別為和,可能的最大虧損率分別為和.投資人計劃投資金額不超過億元,要求確保可能的資金虧損不超過億元,問投資人對甲、乙兩個項目各投資多少億元,才能使可能的盈利最大?21.已知圓的圓心在軸上,且經(jīng)過點,.(Ⅰ)求線段AB的垂直平分線方程;(Ⅱ)求圓的標(biāo)準(zhǔn)方程;(Ⅲ)過點的直線與圓相交于、兩點,且,求直線的方程.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

根據(jù)三角形的面積公式,建立關(guān)于的關(guān)系式,結(jié)合基本不等式,利用1的代換,即可求解,得到答案.【詳解】由題意,因為,的平分線交于點,且,所以,整理得,得,則,當(dāng)且僅當(dāng),即,所以的最小值9,故選B.【點睛】本題主要考查了基本不等式的應(yīng)用,其中合理利用1的代換,結(jié)合基本不等式求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.2、B【解析】試題分析:中位數(shù)為中間的一個數(shù)或兩個數(shù)的平均數(shù),所以中位數(shù)為考點:莖葉圖3、D【解析】

令,根據(jù)正弦型函數(shù)的性質(zhì)可得,那么,可將問題轉(zhuǎn)化為二次函數(shù)在定區(qū)間上的最值問題.【詳解】由題意,令,可得,,∴,∴原函數(shù)的值域與函數(shù)的值域相同.∵函數(shù)圖象的對稱軸為,,取得最大值為.故選:D.【點睛】本題考查三角函數(shù)中的恒等變換、函數(shù)的值域,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意換元法的使用,將問題轉(zhuǎn)化為二次函數(shù)的值域問題.4、A【解析】

根據(jù)題意,分析可得,由三角形面積公式計算可得△DEF和△ACF的面積,進而可得△ABC的面積,由幾何概型公式計算可得答案.【詳解】根據(jù)題意,為等邊三角形,則,則,中,,其面積,中,,,其面積,則的面積,故在大等邊三角形中隨機取一點,則此點取自小等邊三角形的概率,故選:A.【點睛】本題主要考查幾何概型中的面積類型,基本方法是:分別求得構(gòu)成事件A的區(qū)域面積和試驗的全部結(jié)果所構(gòu)成的區(qū)域面積,兩者求比值,即為概率.5、A【解析】

根據(jù)a,b,c依次成等差數(shù)列,,,依次成等比數(shù)列,利用等差、等比中項的性質(zhì)可知,根據(jù)基本不等式求得a=c,判斷出a=b=c,推出結(jié)果.【詳解】由a,b,c依次成等差數(shù)列,有2b=a+c(1)由,,成等比數(shù)列,有(2),由(1)(2)得,又根據(jù),當(dāng)a=c時等號成立,∴可得a=c,∴,綜上可得a=b=c,所以△ABC為等邊三角形.故選:A.【點睛】本題考查三角形的形狀判斷,結(jié)合等差、等比數(shù)列性質(zhì)及基本不等式關(guān)系可得三邊關(guān)系,從而求解,考查綜合分析能力,屬于中等題.6、D【解析】

利用函數(shù)的奇偶性和單調(diào)性,逐一判斷各個選項中的函數(shù)的奇偶性和單調(diào)性,進而得出結(jié)論.【詳解】由于函數(shù)是奇函數(shù),不是偶函數(shù),故排除A;由于函數(shù)是偶函數(shù),但它在區(qū)間上單調(diào)遞增,故排除B;由于函數(shù)是奇函數(shù),不是偶函數(shù),故排除C;由于函數(shù)是偶函數(shù),且滿足在區(qū)間上單調(diào)遞減,故滿足條件.故答案為:D【點睛】本題主要考查了函數(shù)的奇偶性的判定及應(yīng)用,其中解答中熟記函數(shù)的奇偶性的定義和判定方法,以及基本初等函數(shù)的奇偶性是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.7、C【解析】

兩直線斜率相等,且截距不相等?!驹斀狻拷馕觯河深}意得,,解得或2,經(jīng)檢驗時兩直線重合,故.故選C.【點睛】本題考查兩直線平行,屬于基礎(chǔ)題.8、B【解析】

由已知推導(dǎo)出,由此利用排除法能求出結(jié)果.【詳解】,,,,,若,則,故A與C不可能成立;若,則,故B成立,D不成立.故選:B【點睛】本題考查了等比數(shù)列的前項和公式以及排除法在選擇題中的應(yīng)用,屬于中檔題.9、C【解析】分析:利用平面向量的減法法則及共線向量的性質(zhì)求解即可.詳解:因為是的中點,所以,所以,故選C.點睛:本題主要考查共線向量的性質(zhì),平面向量的減法法則,屬于簡單題.10、D【解析】

求出A關(guān)于直線l:的對稱點為C,則BC即為所求【詳解】如下圖所示:點,關(guān)于直線l:的對稱點為C(0,2),連接BC,此時的最小值為故選D.【點睛】本題考查的知識點是兩點間距離公式的應(yīng)用,難度不大,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】試題分析:因為所以考點:向量數(shù)量積及夾角12、1【解析】

f(x)=5x5+2x4+3x3﹣2x2+x﹣8=((((5x+2)x+3)x﹣2)x+1)﹣8,進而得出.【詳解】f(x)=5x5+2x4+3x3﹣2x2+x﹣8=((((5x+2)x+3)x﹣2)x+1)﹣8,當(dāng)x=2時,v0=5,v1=5×2+2=12,v2=12×2+3=27,v3=27×2﹣2=1.故答案為:1.【點睛】本題考查了秦九韶算法,考查了推理能力與計算能力,屬于基礎(chǔ)題.13、【解析】

先求出,再求出,再利用余弦定理求出AD得解.【詳解】依題意得中,,故.在中,由正弦定理可知,,得.在中,因為,故.則.在中,由余弦定理可知,,即.得.【點睛】本題主要考查正弦定理余弦定理解三角形,意在考查學(xué)生對這些知識的理解掌握水平,屬于中檔題.14、【解析】

求出,再利用,求得.【詳解】,因為⊥,所以,解得:.【點睛】本題考查向量的坐標(biāo)表示、數(shù)量積運算,要注意向量坐標(biāo)與點坐標(biāo)的區(qū)別.15、或【解析】

由圓心在直線x﹣3y=0上,設(shè)出圓心坐標(biāo),再根據(jù)圓與y軸相切,得到圓心到y(tǒng)軸的距離即圓心橫坐標(biāo)的絕對值等于圓的半徑,表示出半徑r,距離d,由圓的半徑r及表示出的d利用勾股定理列出關(guān)于t的方程,求出方程的解得到t的值,從而得到圓心坐標(biāo)和半徑,根據(jù)圓心和半徑寫出圓的方程即可.【詳解】設(shè)圓心為(3t,t),半徑為r=|3t|,則圓心到直線y=x的距離d|t|,而()2=r2﹣d2,9t2﹣2t2=7,t=±1,∴圓心是(3,1)或(-3,-1)故答案為或.【點睛】本題綜合考查了垂徑定理,勾股定理及點到直線的距離公式.根據(jù)題意設(shè)出圓心坐標(biāo),找出圓的半徑是解本題的關(guān)鍵.16、72【解析】

先對其中3個人進行全排列有種,再對甲和乙進行插空有種,利用乘法原理得到排法總數(shù)為.【詳解】先對其中3個人進行全排列有種,再對甲和乙進行插空有種,利用乘法原理得到排法總數(shù)為種,故答案為72【點睛】本題考查排列、組合計數(shù)原理的應(yīng)用,考查基本運算能力.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)120;(2).【解析】

(1)參與調(diào)查的總?cè)藬?shù)為20000,其中從持“不支持”態(tài)度的人數(shù)5000中抽取了30人,由此能求出n.(2)總體的平均數(shù)為9,與總體平均數(shù)之差的絕對值超過0.6的數(shù)有8.2,8.3,9.7,由此能求出任取1個數(shù)與總體平均數(shù)之差的絕對值超過0.6的概率.【詳解】(1)參與調(diào)查的總?cè)藬?shù)為8000+4000+2000+1000+2000+3000=20000,其中不支持態(tài)度的人數(shù)2000+3000=5000中抽取了30人,所以n=.(2)總體的平均數(shù)與總體平均數(shù)之差的絕對值超過0.6的數(shù)有8.2,8.3,9.7,所以任取一個數(shù)與總體平均數(shù)之差的絕對值超過0.6的概率.【點睛】本題主要考查了樣本容量的求法,分層抽樣,用列舉法求古典概型的概率,屬于中檔題.18、答案見解析【解析】

利用函數(shù)函數(shù)的圖像變換規(guī)律和五點作圖法可解.【詳解】由函數(shù)的圖像上的每一點保持縱坐標(biāo)不變,橫坐標(biāo)擴大為原來的2倍,得到函數(shù)的圖像,

再將函數(shù)的圖像向左平移個單位,得到函數(shù)的圖像.

然后再把函數(shù)的圖像上每一個點的橫坐標(biāo)保持不變,縱坐標(biāo)擴大為原來的2倍,得到函數(shù)的圖像.作函數(shù)的圖像列表得0100函數(shù)圖像為【點睛】本題考查函數(shù)的圖像變換的過程敘述和作出函數(shù)的一個周期的簡圖,屬于基礎(chǔ)題.19、(1)(2)存在,使不等式恒成立,詳見解析.【解析】

(1)由知函數(shù)關(guān)于對稱,求出后,通過構(gòu)造函數(shù)求出;(2)利用不等式的兩邊夾定理,令,得,結(jié)合已知條件,解出;然后設(shè)存在實數(shù),,命題成立,運用根的判別式建立關(guān)于實數(shù)的不等式組,解得.【詳解】(1)由得此時,,構(gòu)造函數(shù),.即的取值范圍是.(2)由對一切實數(shù)恒成立,得由得由得恒成立,也即,此時,.把,.代入,不等式也恒成立,所以,.【點睛】本題第(1)問,常用“反客為主法”,即把參數(shù)當(dāng)成主元,而把看成參數(shù);第(2)問,不等式對任意實數(shù)恒成立,常用賦值法切入問題.20、投資人用億元投資甲項目,億元投資乙項目,才能在確保虧損不超過億元的前提下,使可能的盈利最大.【解析】

設(shè)投資人分別用億元、億元投資甲、乙兩個項目,根據(jù)題意列出變量、所滿足的約束條件和線性目標(biāo)函數(shù),利用平移直線的方法得出線性目標(biāo)函數(shù)取得最大值時的最優(yōu)解,并將最優(yōu)解代入線性目標(biāo)函數(shù)可得出盈利的最大值,從而解答該問題.【詳解】設(shè)投資人分別用億元、億元投資甲、乙兩個項目,由題意知,即,目標(biāo)函數(shù)為.上述不等式組表示平面區(qū)域如圖所示,陰影部分(含邊界)即可行域.由圖可知,當(dāng)直線經(jīng)過點時,該直線在軸上截距最大,此時取得最大值,解方程組,得,所以,點的坐標(biāo)為.當(dāng),時,取得最大值,此時,(億元).答:投資人用億元投資甲項目,億元投資乙項目,才能在確保虧損不超過億元的前提下,使可能的盈利最大.【點睛】本題考查線性規(guī)劃的實際應(yīng)用,考查利用數(shù)學(xué)知識解決實際問題,解題的關(guān)鍵就是列出變量所滿足的約束條件,并利用數(shù)形結(jié)合思想求解,考查分析問題和解決問題的能力,屬于中等題.21、(Ⅰ);(Ⅱ);(Ⅲ)或.【解析】

(Ⅰ)利用垂直平分關(guān)系得到斜率及中點,從而得到結(jié)果;(Ⅱ)設(shè)圓的標(biāo)準(zhǔn)方程為,結(jié)合第一問可得結(jié)果;(Ⅲ)由題意可知:圓心到直線的距離為1,分類討論可得結(jié)果.【詳解】解:(Ⅰ)設(shè)的中點為,則.由圓的性質(zhì),得,所以,得.所以線段的垂直平分線的方程是.(II)設(shè)圓的標(biāo)準(zhǔn)方程為,其中,半徑為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論