版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
安徽省安慶市重點(diǎn)中學(xué)2024年高一數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測(cè)模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.若過(guò)點(diǎn),的直線與直線平行,則的值為()A.1 B.4 C.1或3 D.1或42.為了得到函數(shù)的圖象,可以將函數(shù)的圖象()A.向左平移 B.向右平移C.向左平移 D.向右平移3.若向量,的夾角為60°,且||=2,||=3,則|2|=()A.2 B.14 C.2 D.84.利用隨機(jī)模擬方法可估計(jì)無(wú)理數(shù)π的數(shù)值,為此設(shè)計(jì)右圖所示的程序框圖,其中rand()表示產(chǎn)生區(qū)間(0,1)上的隨機(jī)數(shù),P是s與n的比值,執(zhí)行此程序框圖,輸出結(jié)果P的值趨近于()A.π B.π4 C.π25.在區(qū)間上隨機(jī)選取一個(gè)數(shù),則滿足的概率為()A. B. C. D.6.從裝有兩個(gè)紅球和兩個(gè)黑球的口袋里任取兩個(gè)球,那么對(duì)立的兩個(gè)事件是()A.“至少有一個(gè)黑球”與“都是黑球”B.“至少有一個(gè)黑球”與“至少有一個(gè)紅球”C.“恰好有一個(gè)黑球”與“恰好有兩個(gè)黑球”D.“至少有一個(gè)黑球”與“都是紅球”7.甲、乙兩隊(duì)準(zhǔn)備進(jìn)行一場(chǎng)籃球賽,根據(jù)以往的經(jīng)驗(yàn)甲隊(duì)獲勝的概率是,兩隊(duì)打平的概率是,則這次比賽乙隊(duì)不輸?shù)母怕适牵ǎ〢.- B. C. D.8.在中,,是邊上的一點(diǎn),,若為銳角,的面積為20,則()A. B. C. D.9.的值為()A.1 B. C. D.10.已知向量,則與的夾角為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知正四棱錐的底面邊長(zhǎng)為,高為,則該四棱錐的側(cè)面積是______________12.設(shè)a>0,b>0,若是與3b的等比中項(xiàng),則的最小值是__.13.如圖是一個(gè)算法流程圖.若輸出的值為4,則輸入的值為_(kāi)_____________.14.若數(shù)列滿足,,則______.15.已知樣本數(shù)據(jù)的方差是1,如果有,那么數(shù)據(jù),的方差為_(kāi)_____.16.如圖,在直四棱柱中,,,,分別為的中點(diǎn),平面平面.給出以下幾個(gè)說(shuō)法:①;②直線與的夾角為;③與平面所成的角為;④平面內(nèi)存在直線與平行.其中正確命題的序號(hào)是__________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.在中,角,,所對(duì)的邊分別為,,,且,.(1)求證:是銳角三角形;(2)若,求的面積.18.已知向量.(I)當(dāng)實(shí)數(shù)為何值時(shí),向量與共線?(II)若向量,且三點(diǎn)共線,求實(shí)數(shù)的值.19.在銳角中,角,,所對(duì)的邊分別為,,.已知,.(1)求的值;(2)若,求的面積.20.某產(chǎn)品具有一定的時(shí)效性,在這個(gè)時(shí)效期內(nèi),由市場(chǎng)調(diào)查可知,在不做廣告宣傳且每件獲利a元的前提下,可賣出b件;若做廣告宣傳,廣告費(fèi)為n千元比廣告費(fèi)為千元時(shí)多賣出件。(1)試寫出銷售量與n的函數(shù)關(guān)系式;(2)當(dāng)時(shí),廠家應(yīng)該生產(chǎn)多少件產(chǎn)品,做幾千元的廣告,才能獲利最大?21.已知直線:在軸上的截距為,在軸上的截距為.(1)求實(shí)數(shù),的值;(2)求點(diǎn)到直線的距離.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】
首先設(shè)一條與已知直線平行的直線,點(diǎn),代入直線方程即可求出的值.【詳解】設(shè)與直線平行的直線:,點(diǎn),代入直線方程,有.故選:A.【點(diǎn)睛】本題考查了利用直線的平行關(guān)系求參數(shù),屬于基礎(chǔ)題.注意直線與直線在時(shí)相互平行.2、B【解析】
利用的圖象變換規(guī)律,即可求解,得出結(jié)論.【詳解】由題意,函數(shù),,又由,故把函數(shù)的圖象上所有的點(diǎn),向右平移個(gè)單位長(zhǎng)度,可得的圖象,故選:B.【點(diǎn)睛】本題主要考查了三角函數(shù)的圖象變換規(guī)律,其中解答中熟記三角函數(shù)的圖象變換是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.3、A【解析】
由已知可得||,根據(jù)數(shù)量積公式求解即可.【詳解】||.故選A.【點(diǎn)睛】本題考查平面向量數(shù)量積的性質(zhì)及運(yùn)算,考查了利用數(shù)量積進(jìn)行向量模的運(yùn)算求解方法,屬于基礎(chǔ)題.4、B【解析】
根據(jù)程序框圖可知由幾何概型計(jì)算出x,y任?。?,1)上的數(shù)時(shí)落在x2【詳解】解:根據(jù)程序框圖可知P為頻率,它趨近于在邊長(zhǎng)為1的正方形中隨機(jī)取一點(diǎn)落在扇形內(nèi)的的概率π×故選:B【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是程序框圖,根據(jù)已知中的程序框圖分析出程序的功能,并將問(wèn)題轉(zhuǎn)化為幾何概型問(wèn)題是解答本題的關(guān)鍵,屬于基礎(chǔ)題.5、D【解析】
在區(qū)間上,且滿足所得區(qū)間為,利用區(qū)間的長(zhǎng)度比,即可求解.【詳解】由題意,在區(qū)間上,且滿足所得區(qū)間為,由長(zhǎng)度比的幾何概型,可得概率為,故選D.【點(diǎn)睛】本題主要考查了長(zhǎng)度比的幾何概型的概率的計(jì)算,其中解答中認(rèn)真審題,合理利用長(zhǎng)度比求解是解答的關(guān)鍵,著重考查了分析問(wèn)題和解答問(wèn)題的能力,屬于基礎(chǔ)題.6、D【解析】
寫出所有等可能事件,求出事件“至少有一個(gè)黑球”的概率為,事件“都是紅球”的概率為,兩事件的概率和為,從而得到兩事件對(duì)立.【詳解】記兩個(gè)黑球?yàn)?,兩個(gè)紅球?yàn)?,則任取兩球的所有等可能結(jié)果為:,記事件A為“至少有一個(gè)黑球”,事件為:“都是紅球”,則,因?yàn)?,所以事件與事件互為對(duì)立事件.【點(diǎn)睛】本題考查古典概型和對(duì)立事件的判斷,利用兩事件的概率和為1是判斷對(duì)立事件的常用方法.7、C【解析】
因?yàn)椤凹钻?duì)獲勝”與“乙隊(duì)不輸”是對(duì)立事件,對(duì)立事件的概率之和為1,進(jìn)而即可求出結(jié)果.【詳解】由題意,“甲隊(duì)獲勝”與“乙隊(duì)不輸”是對(duì)立事件,因?yàn)榧钻?duì)獲勝的概率是,所以,這次比賽乙隊(duì)不輸?shù)母怕适?故選C【點(diǎn)睛】本題主要考查對(duì)立事件的概率問(wèn)題,熟記對(duì)立事件的性質(zhì)即可,屬于常考題型.8、C【解析】
先利用面積公式計(jì)算出,計(jì)算出,運(yùn)用余弦定理計(jì)算出,利用正弦定理計(jì)算出,在中運(yùn)用正弦定理求解出.【詳解】解:由的面積公式可知,,可得,為銳角,可得在中,,即有,由可得,由可知.故選.【點(diǎn)睛】本題考查正弦定理與余弦定理在解三角形中的應(yīng)用,考查方程思想,屬于中檔題.9、A【解析】
利用誘導(dǎo)公式將轉(zhuǎn)化到,然后直接計(jì)算出結(jié)果即可.【詳解】因?yàn)椋?故選:A.【點(diǎn)睛】本題考查正切誘導(dǎo)公式的簡(jiǎn)單運(yùn)用,難度較易.注意:.10、D【解析】
根據(jù)題意,由向量數(shù)量積的計(jì)算公式可得cosθ的值,據(jù)此分析可得答案.【詳解】設(shè)與的夾角為θ,由、的坐標(biāo)可得||=5,||=3,?5×0+5×(﹣3)=﹣15,故,所以.故選D【點(diǎn)睛】本題考查向量數(shù)量積的坐標(biāo)計(jì)算,涉及向量夾角的計(jì)算,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】四棱錐的側(cè)面積是12、【解析】由已知,是與的等比中項(xiàng),則則,當(dāng)且僅當(dāng)時(shí)等號(hào)成立故答案為2【點(diǎn)睛】本題考查基本不等式的性質(zhì)、等比數(shù)列的性質(zhì),其中熟練應(yīng)用“乘1法”是解題的關(guān)鍵.13、-1【解析】
對(duì)的范圍分類,利用流程圖列方程即可得解.【詳解】當(dāng)時(shí),由流程圖得:令,解得:,滿足題意.當(dāng)時(shí),由流程圖得:令,解得:,不滿足題意.故輸入的值為:【點(diǎn)睛】本題主要考查了流程圖知識(shí),考查分類思想及方程思想,屬于基礎(chǔ)題.14、【解析】
利用遞推公式再遞推一步,得到一個(gè)新的等式,兩個(gè)等式相減,再利用累乘法可求出數(shù)列的通項(xiàng)公式,利用所求的通項(xiàng)公式可以求出的值.【詳解】得,,所以有,因此.故答案為:【點(diǎn)睛】本題考查了利用遞推公式求數(shù)列的通項(xiàng)公式,考查了累乘法,考查了數(shù)學(xué)運(yùn)算能力.15、1【解析】
利用方差的性質(zhì)直接求解.【詳解】根據(jù)題意,樣本數(shù)據(jù)的平均數(shù)為,方差是1,則有,對(duì)于數(shù)據(jù),其平均數(shù)為,其方差為,故答案為1.【點(diǎn)睛】本題考查方差的求法,考查方差的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.16、①③.【解析】
利用線面平行的性質(zhì)定理可判斷①;利用平行線的性質(zhì)可得直線與的夾角等于直線與所成的角,在中即可判斷②;與平面所成的角即為與平面所成的角可判斷③;根據(jù)直線與平面的位置關(guān)系可判斷④;【詳解】對(duì)于①,由,平面平面,則,又,所以,故①正確;對(duì)于②,連接,由,即直線與的夾角等于直線與所成的角,在中,,顯然直線與的夾角不為,故②不正確;對(duì)于③,與平面所成的角即為與平面所成的角,根據(jù)三棱柱為直棱柱可知為與平面所成的角,在梯形中,,,,可解得與平面所成的角為,故③正確;對(duì)于④,由于與平面相交,故平面內(nèi)不存在與平行的直線.故答案為:①③【點(diǎn)睛】本題是一道立體幾何題目,考查了線面平行的性質(zhì)定理,求線面角以及直線與平面之間的位置關(guān)系,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析(2)【解析】
(1)由正弦定理、余弦定理得,則角C最大,由余弦定理可得答案.
(2)由平面向量數(shù)量積的運(yùn)算及三角形的面積公式結(jié)合(1)可得,利用面積公式可求解.【詳解】【詳解】
(1)由,根據(jù)正弦定理得,又,所以即,所以,因此邊最大,即角最大.設(shè)則即,所以是銳角三角形.(2)由(1)和,即可得解得.所以在中,且所以的面積為.【點(diǎn)睛】本題考查正弦定理和余弦定理,數(shù)量積的定義的應(yīng)用和求三角形面積.18、(1)(2)【解析】
(1)利用向量的運(yùn)算法則、共線定理即可得出;(2)利用向量共線定理、平面向量基本定理即可得出.【詳解】(1)kk(1,0)﹣(2,1)=(k﹣2,﹣1).2(1,0)+2(2,1)=(5,2).∵k與2共線∴2(k﹣2)﹣(﹣1)×5=0,即2k﹣4+5=0,得k.(2)∵A、B、C三點(diǎn)共線,∴.∴存在實(shí)數(shù)λ,使得,又與不共線,∴,解得.【點(diǎn)睛】本題考查了向量的運(yùn)算法則、共線定理、平面向量基本定理,屬于基礎(chǔ)題.19、(1)2;(2)3.【解析】
(1)利用正弦定理可得,消元后可得關(guān)于的三角方程,從該方程可得的值.(2)利用同角的三角函數(shù)的基本關(guān)系式結(jié)合(1)中的結(jié)果可得,再根據(jù)題設(shè)條件得到后再利用正弦定理可求的值,從而得到所求的面積.【詳解】(1)在由正弦定理得,①,因?yàn)?所以,又因?yàn)?,所以,整理得到,?(2)在銳角中,因?yàn)?,所以,將代入①?在由正弦定理得,所以.【點(diǎn)睛】在解三角形中,如果題設(shè)條件是邊角的混合關(guān)系,那么我們可以利用正弦定理或余弦定理把這種混合關(guān)系式轉(zhuǎn)化為邊的關(guān)系式或角的關(guān)系式.另外,三角形中共有七個(gè)幾何量(三邊三角以及外接圓的半徑),一般地,知道兩角及一邊,用正弦定理.另外,如果知道兩個(gè)角的三角函數(shù)值,則必定可以求第三角的三角函數(shù)值,此時(shí)涉及到的公式有同角的三角函數(shù)的基本關(guān)系式和兩角和差的三角公式、倍角公式等.20、(1)(2)【解析】試題分析:(1)根據(jù)若做廣告宣傳,廣告費(fèi)為n千元比廣告費(fèi)為千元時(shí)多賣出件,可得,利用疊加法可求得.(2)根據(jù)題意在時(shí),利潤(rùn),可利用求最值.試題解析:(1)設(shè)表示廣告費(fèi)為0元時(shí)的銷售量,由題意知,由疊加法可得即為所求。(2)設(shè)當(dāng)時(shí),獲利為元
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 45163.1-2024起重機(jī)械智能化系統(tǒng)第1部分:術(shù)語(yǔ)和分級(jí)
- 2024版服務(wù)合同終止條款具體執(zhí)行合同一
- 二零二五版建筑工地臨時(shí)應(yīng)急預(yù)案制定與演練合同3篇
- 二零二五年度設(shè)備維修保養(yǎng)合同for工業(yè)機(jī)器人2篇
- 二零二五年度視覺(jué)設(shè)計(jì)合同2篇
- 2024版智能家居系統(tǒng)集成服務(wù)合同
- 二零二五年黃金抵押貸款擔(dān)保投資合同3篇
- 二零二五年度新能源汽車充電樁建設(shè)標(biāo)前協(xié)議3篇
- 2024年生態(tài)修復(fù)技術(shù)支持協(xié)議
- 二零二五版工藝品電商平臺(tái)入駐與運(yùn)營(yíng)合作協(xié)議3篇
- 五年級(jí)上冊(cè)口算練習(xí)400題及答案
- 預(yù)防保健科主任競(jìng)聘課件
- 團(tuán)隊(duì)成員介紹
- 水泵行業(yè)銷售人員工作匯報(bào)
- 《流感科普宣教》課件
- 離職分析報(bào)告
- 春節(jié)家庭用電安全提示
- 醫(yī)療糾紛預(yù)防和處理?xiàng)l例通用課件
- 廚邦醬油推廣方案
- 乳腺癌診療指南(2024年版)
- 保險(xiǎn)產(chǎn)品創(chuàng)新與市場(chǎng)定位培訓(xùn)課件
評(píng)論
0/150
提交評(píng)論