版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
北京市昌平區(qū)新道臨川校2021-2022學年中考數(shù)學四模試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.如圖,邊長為1的小正方形構成的網格中,半徑為1的⊙O的圓心O在格點上,則∠BED的正切值等于()A. B. C.2 D.2.如圖顯示了用計算機模擬隨機投擲一枚圖釘?shù)哪炒螌嶒灥慕Y果.下面有三個推斷:①當投擲次數(shù)是500時,計算機記錄“釘尖向上”的次數(shù)是308,所以“釘尖向上”的概率是0.616;②隨著試驗次數(shù)的增加,“釘尖向上”的頻率總在0.618附近擺動,顯示出一定的穩(wěn)定性,可以估計“釘尖向上”的概率是0.618;③若再次用計算機模擬此實驗,則當投擲次數(shù)為1000時,“釘尖向上”的頻率一定是0.1.其中合理的是()A.① B.② C.①② D.①③3.如圖,在矩形ABCD中,AB=4,BC=6,點E為BC的中點,將ABE沿AE折疊,使點B落在矩形內點F處,連接CF,則CF的長為()A. B. C. D.4.如圖,直線y=kx+b與y=mx+n分別交x軸于點A(﹣1,0),B(4,0),則函數(shù)y=(kx+b)(mx+n)中,則不等式的解集為()A.x>2 B.0<x<4C.﹣1<x<4 D.x<﹣1或x>45.下列計算正確的是()A.x2+x3=x5 B.x2?x3=x5 C.(﹣x2)3=x8 D.x6÷x2=x36.下列各式屬于最簡二次根式的有()A. B. C. D.7.已知xa=2,xb=3,則x3a﹣2b等于()A. B.﹣1 C.17 D.728.習近平主席在2018年新年賀詞中指出,2017年,基本醫(yī)療保險已經覆蓋1350000000人.將1350000000用科學記數(shù)法表示為()A.135×107 B.1.35×109 C.13.5×108 D.1.35×10149.等腰三角形的一個外角是100°,則它的頂角的度數(shù)為()A.80° B.80°或50° C.20° D.80°或20°10.如果一元二次方程2x2+3x+m=0有兩個相等的實數(shù)根,那么實數(shù)m的取值為()A.m> B.m C.m= D.m=二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,四邊形OABC是矩形,ADEF是正方形,點A、D在x軸的正半軸上,點C在y軸的正半軸上,點F在AB上,點B、E在反比例函數(shù)的圖像上,OA=1,OC=6,則正方形ADEF的邊長為.12.如圖,一束光線從點A(3,3)出發(fā),經過y軸上點C反射后經過點B(1,0),則光線從點A到點B經過的路徑長為_____.13.若正六邊形的邊長為2,則此正六邊形的邊心距為______.14.在一張直角三角形紙片的兩直角邊上各取一點,分別沿斜邊中點與這兩點的連線剪去兩個三角形,剩下的部分是如圖所示的四邊形,AB∥CD,CD⊥BC于C,且AB、BC、CD邊長分別為2,4,3,則原直角三角形紙片的斜邊長是_______.15.化簡的結果為_____.16.工人師傅常用角尺平分一個任意角.做法如下:如圖,∠AOB是一個任意角,在邊OA,OB上分別取OM=ON,移動角尺,使角尺兩邊相同的刻度分別與M,N重合.過角尺頂點C的射線OC即是∠AOB的平分線.做法中用到全等三角形判定的依據(jù)是______.三、解答題(共8題,共72分)17.(8分)已知a2+2a=9,求的值.18.(8分)試探究:小張在數(shù)學實踐活動中,畫了一個△ABC,∠ACB=90°,BC=1,AC=2,再以點B為圓心,BC為半徑畫弧交AB于點D,然后以A為圓心,AD長為半徑畫弧交AC于點E,如圖1,則AE=;此時小張發(fā)現(xiàn)AE2=AC?EC,請同學們驗證小張的發(fā)現(xiàn)是否正確.拓展延伸:小張利用圖1中的線段AC及點E,構造AE=EF=FC,連接AF,得到圖2,試完成以下問題:(1)求證:△ACF∽△FCE;(2)求∠A的度數(shù);(3)求cos∠A的值;應用遷移:利用上面的結論,求半徑為2的圓內接正十邊形的邊長.19.(8分)如圖甲,直線y=﹣x+3與x軸、y軸分別交于點B、點C,經過B、C兩點的拋物線y=x2+bx+c與x軸的另一個交點為A,頂點為P.(1)求該拋物線的解析式;(2)在該拋物線的對稱軸上是否存在點M,使以C,P,M為頂點的三角形為等腰三角形?若存在,請直接寫出所符合條件的點M的坐標;若不存在,請說明理由;(3)當0<x<3時,在拋物線上求一點E,使△CBE的面積有最大值(圖乙、丙供畫圖探究).20.(8分)為了鞏固全國文明城市建設成果,突出城市品質的提升,近年來,某市積極落實節(jié)能減排政策,推行綠色建筑,據(jù)統(tǒng)計,該市2014年的綠色建筑面積約為950萬平方米,2016年達到了1862萬平方米.若2015年、2016年的綠色建筑面積按相同的增長率逐年遞增,請解答下列問題:求這兩年該市推行綠色建筑面積的年平均增長率;2017年該市計劃推行綠色建筑面積達到2400萬平方米.如果2017年仍保持相同的年平均增長率,請你預測2017年該市能否完成計劃目標.21.(8分)解方程:.22.(10分)“中國制造”是世界上認知度最高的標簽之一,因此,我縣越來越多的群眾選擇購買國產空調,已知購買1臺A型號的空調比1臺B型號的空調少200元,購買2臺A型號的空調與3臺B型號的空調共需11200元,求A、B兩種型號的空調的購買價各是多少元?23.(12分)如圖,為的直徑,,為上一點,過點作的弦,設.(1)若時,求、的度數(shù)各是多少?(2)當時,是否存在正實數(shù),使弦最短?如果存在,求出的值,如果不存在,說明理由;(3)在(1)的條件下,且,求弦的長.24.某公司為了擴大經營,決定購進6臺機器用于生產某活塞.現(xiàn)有甲、乙兩種機器供選擇,其中每種機器的價格和每臺機器日生產活塞的數(shù)量如下表所示.經過預算,本次購買機器所耗資金不能超過34萬元.甲乙價格(萬元/臺)75每臺日產量(個)10060(1)按該公司要求可以有幾種購買方案?如果該公司購進的6臺機器的日生產能力不能低于380個,那么為了節(jié)約資金應選擇什么樣的購買方案?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
根據(jù)同弧或等弧所對的圓周角相等可知∠BED=∠BAD,再結合圖形根據(jù)正切的定義進行求解即可得.【詳解】∵∠DAB=∠DEB,∴tan∠DEB=tan∠DAB=,故選D.【點睛】本題考查了圓周角定理(同弧或等弧所對的圓周角相等)和正切的概念,正確得出相等的角是解題關鍵.2、B【解析】①當頻數(shù)增大時,頻率逐漸穩(wěn)定的值即為概率,500次的實驗次數(shù)偏低,而頻率穩(wěn)定在了0.618,錯誤;②由圖可知頻數(shù)穩(wěn)定在了0.618,所以估計頻率為0.618,正確;③.這個實驗是一個隨機試驗,當投擲次數(shù)為1000時,釘尖向上”的概率不一定是0.1.錯誤,故選B.【點睛】本題考查了利用頻率估計概率,能正確理解相關概念是解題的關鍵.3、B【解析】
連接BF,由折疊可知AE垂直平分BF,根據(jù)勾股定理求得AE=5,利用直角三角形面積的兩種表示法求得BH=,即可得BF=,再證明∠BFC=90°,最后利用勾股定理求得CF=.【詳解】連接BF,由折疊可知AE垂直平分BF,∵BC=6,點E為BC的中點,∴BE=3,又∵AB=4,∴AE==5,∵,∴,∴BH=,則BF=,∵FE=BE=EC,∴∠BFC=90°,∴CF==.故選B.【點睛】本題考查的是翻折變換的性質、矩形的性質及勾股定理的應用,掌握折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等是解題的關鍵.4、C【解析】
看兩函數(shù)交點坐標之間的圖象所對應的自變量的取值即可.【詳解】∵直線y1=kx+b與直線y2=mx+n分別交x軸于點A(﹣1,0),B(4,0),∴不等式(kx+b)(mx+n)>0的解集為﹣1<x<4,故選C.【點睛】本題主要考查一次函數(shù)和一元一次不等式,本題是借助一次函數(shù)的圖象解一元一次不等式,兩個圖象的“交點”是兩個函數(shù)值大小關系的“分界點”,在“分界點”處函數(shù)值的大小發(fā)生了改變.5、B【解析】分析:直接利用合并同類項法則以及同底數(shù)冪的乘除運算法則和積的乘方運算法則分別計算得出答案.詳解:A、不是同類項,無法計算,故此選項錯誤;B、正確;C、故此選項錯誤;D、故此選項錯誤;故選:B.點睛:此題主要考查了合并同類項以及同底數(shù)冪的乘除運算和積的乘方運算,正確掌握運算法則是解題關鍵.6、B【解析】
先根據(jù)二次根式的性質化簡,再根據(jù)最簡二次根式的定義判斷即可.【詳解】A選項:,故不是最簡二次根式,故A選項錯誤;B選項:是最簡二次根式,故B選項正確;C選項:,故不是最簡二次根式,故本選項錯誤;D選項:,故不是最簡二次根式,故D選項錯誤;
故選:B.【點睛】考查了對最簡二次根式的定義的理解,能理解最簡二次根式的定義是解此題的關鍵.7、A【解析】∵xa=2,xb=3,∴x3a?2b=(xa)3÷(xb)2=8÷9=,故選A.8、B【解析】
科學記數(shù)法的表示形式為a×的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】將1350000000用科學記數(shù)法表示為:1350000000=1.35×109,故選B.【點睛】本題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值及n的值.9、D【解析】
根據(jù)鄰補角的定義求出與外角相鄰的內角,再根據(jù)等腰三角形的性質分情況解答.【詳解】∵等腰三角形的一個外角是100°,∴與這個外角相鄰的內角為180°?100°=80°,當80°為底角時,頂角為180°-160°=20°,∴該等腰三角形的頂角是80°或20°.故答案選:D.【點睛】本題考查了等腰三角形的性質,解題的關鍵是熟練的掌握等腰三角形的性質.10、C【解析】試題解析:∵一元二次方程2x2+3x+m=0有兩個相等的實數(shù)根,∴△=32-4×2m=9-8m=0,解得:m=.故選C.二、填空題(本大題共6個小題,每小題3分,共18分)11、2【解析】試題分析:由OA=1,OC=6,可得矩形OABC的面積為6;再根據(jù)反比例函數(shù)系數(shù)k的幾何意義,可知k=6,∴反比例函數(shù)的解析式為;設正方形ADEF的邊長為a,則點E的坐標為(a+1,a),∵點E在拋物線上,∴,整理得,解得或(舍去),故正方形ADEF的邊長是2.考點:反比例函數(shù)系數(shù)k的幾何意義.12、2【解析】
延長AC交x軸于B′.根據(jù)光的反射原理,點B、B′關于y軸對稱,CB=CB′.路徑長就是AB′的長度.結合A點坐標,運用勾股定理求解.【詳解】解:如圖所示,延長AC交x軸于B′.則點B、B′關于y軸對稱,CB=CB′.作AD⊥x軸于D點.則AD=3,DB′=3+1=1.由勾股定理AB′=2∴AC+CB=AC+CB′=AB′=2.即光線從點A到點B經過的路徑長為2.考點:解直角三角形的應用點評:本題考查了直角三角形的有關知識,同時滲透光學中反射原理,構造直角三角形是解決本題關鍵13、.【解析】
連接OA、OB,根據(jù)正六邊形的性質求出∠AOB,得出等邊三角形OAB,求出OA、AM的長,根據(jù)勾股定理求出即可.【詳解】連接OA、OB、OC、OD、OE、OF,∵正六邊形ABCDEF,∴∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠AOF,∴∠AOB=60°,OA=OB,∴△AOB是等邊三角形,∴OA=OB=AB=2,∵AB⊥OM,∴AM=BM=1,在△OAM中,由勾股定理得:OM=.14、45或1【解析】
先根據(jù)題意畫出圖形,再根據(jù)勾股定理求出斜邊上的中線,最后即可求出斜邊的長.【詳解】①如圖:因為AC=22+4點A是斜邊EF的中點,所以EF=2AC=45,②如圖:因為BD=32點D是斜邊EF的中點,所以EF=2BD=1,綜上所述,原直角三角形紙片的斜邊長是45或1,故答案是:45或1.【點睛】此題考查了圖形的剪拼,解題的關鍵是能夠根據(jù)題意畫出圖形,在解題時要注意分兩種情況畫圖,不要漏解.15、+1【解析】
利用積的乘方得到原式=[(﹣1)(+1)]2017?(+1),然后利用平方差公式計算.【詳解】原式=[(﹣1)(+1)]2017?(+1)=(2﹣1)2017?(+1)=+1.故答案為:+1.【點睛】本題考查了二次根式的混合運算,在二次根式的混合運算中,如能結合題目特點,靈活運用二次根式的性質,選擇恰當?shù)慕忸}途徑,往往能事半功倍.16、SSS.【解析】
由三邊相等得△COM≌△CON,即由SSS判定三角全等.做題時要根據(jù)已知條件結合判定方法逐個驗證.【詳解】由圖可知,CM=CN,又OM=ON,∵在△MCO和△NCO中,∴△COM≌△CON(SSS),∴∠AOC=∠BOC,即OC是∠AOB的平分線.故答案為:SSS.【點睛】本題考查了全等三角形的判定及性質.要熟練掌握確定三角形的判定方法,利用數(shù)學知識解決實際問題是一種重要的能力,要注意培養(yǎng).三、解答題(共8題,共72分)17、,.【解析】試題分析:原式第二項利用除法法則變形,約分后兩項通分并利用同分母分式的減法法則計算得到最簡結果,把已知等式變形后代入計算即可求出值.試題解析:===,∵a2+2a=9,∴(a+1)2=1.∴原式=.18、(1)小張的發(fā)現(xiàn)正確;(2)詳見解析;(3)∠A=36°;(4)【解析】
嘗試探究:根據(jù)勾股定理計算即可;拓展延伸:(1)由AE2=AC?EC,推出,又AE=FC,推出,即可解問題;(2)利用相似三角形的性質即可解決問題;(3)如圖,過點F作FM⊥AC交AC于點M,根據(jù)cos∠A=,求出AM、AF即可;應用遷移:利用(3)中結論即可解決問題;【詳解】解:嘗試探究:﹣1;∵∠ACB=90°,BC=1,AC=2,∴AB=,∴AD=AE=,∵AE2=()2=6﹣2,AC?EC=2×[2﹣()]=6﹣,∴AE2=AC?EC,∴小張的發(fā)現(xiàn)正確;拓展延伸:(1)∵AE2=AC?EC,∴∵AE=FC,∴,又∵∠C=∠C,∴△ACF∽△FCE;(2)∵△ACF∽△FCE,∴∠AFC=∠CEF,又∵EF=FC,∴∠C=∠CEF,∴∠AFC=∠C,∴AC=AF,∵AE=EF,∴∠A=∠AFE,∴∠FEC=2∠A,∵EF=FC,∴∠C=2∠A,∵∠AFC=∠C=2∠A,∵∠AFC+∠C+∠A=180°,∴∠A=36°;(3)如圖,過點F作FM⊥AC交AC于點M,由嘗試探究可知AE=,EC=,∵EF=FC,由(2)得:AC=AF=2,∴ME=,∴AM=,∴cos∠A=;應用遷移:∵正十邊形的中心角等于=36°,且是半徑為2的圓內接正十邊形,∴如圖,當點A是圓內接正十邊形的圓心,AC和AF都是圓的半徑,F(xiàn)C是正十邊形的邊長時,設AF=AC=2,F(xiàn)C=EF=AE=x,∵△ACF∽△FCE,∴,∴,∴,∴半徑為2的圓內接正十邊形的邊長為.【點睛】本題考查相似三角形的判定和性質、等腰三角形的判定和性質等知識,解題的關鍵是正確尋找相似三角形解決問題,學會利用數(shù)形結合的思想思考問題,屬于中考壓軸題.19、(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E點坐標為(,)時,△CBE的面積最大.【解析】試題分析:(1)由直線解析式可求得B、C坐標,利用待定系數(shù)法可求得拋物線解析式;(2)由拋物線解析式可求得P點坐標及對稱軸,可設出M點坐標,表示出MC、MP和PC的長,分MC=MP、MC=PC和MP=PC三種情況,可分別得到關于M點坐標的方程,可求得M點的坐標;(3)過E作EF⊥x軸,交直線BC于點F,交x軸于點D,可設出E點坐標,表示出F點的坐標,表示出EF的長,進一步可表示出△CBE的面積,利用二次函數(shù)的性質可求得其取得最大值時E點的坐標.試題解析:(1)∵直線y=﹣x+3與x軸、y軸分別交于點B、點C,∴B(3,0),C(0,3),把B、C坐標代入拋物線解析式可得,解得,∴拋物線解析式為y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴拋物線對稱軸為x=2,P(2,﹣1),設M(2,t),且C(0,3),∴MC=,MP=|t+1|,PC=,∵△CPM為等腰三角形,∴有MC=MP、MC=PC和MP=PC三種情況,①當MC=MP時,則有=|t+1|,解得t=,此時M(2,);②當MC=PC時,則有=2,解得t=﹣1(與P點重合,舍去)或t=7,此時M(2,7);③當MP=PC時,則有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此時M(2,﹣1+2)或(2,﹣1﹣2);綜上可知存在滿足條件的點M,其坐標為(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)如圖,過E作EF⊥x軸,交BC于點F,交x軸于點D,設E(x,x2﹣4x+3),則F(x,﹣x+3),∵0<x<3,∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,∴S△CBE=S△EFC+S△EFB=EF?OD+EF?BD=EF?OB=×3(﹣x2+3x)=﹣(x﹣)2+,∴當x=時,△CBE的面積最大,此時E點坐標為(,),即當E點坐標為(,)時,△CBE的面積最大.考點:二次函數(shù)綜合題.20、(1)這兩年該市推行綠色建筑面積的年平均增長率為40%;(2)如果2017年仍保持相同的年平均增長率,2017年該市能完成計劃目標.【解析】試題分析:(1)設這兩年該市推行綠色建筑面積的年平均增長率x,根據(jù)2014年的綠色建筑面積約為700萬平方米和2016年達到了1183萬平方米,列出方程求解即可;(2)根據(jù)(1)求出的增長率問題,先求出預測2017年綠色建筑面積,再與計劃推行綠色建筑面積達到1500萬平方米進行比較,即可得出答案.試題解析:(1)設這兩年該市推行綠色建筑面積的年平均增長率為x,根據(jù)題意得:700(1+x)2=1183,解得:x1=0.3=30%,x2=﹣2.3(舍去),答:這兩年該市推行綠色建筑面積的年平均增長率為30%;(2)根據(jù)題意得:1183×(1+30%)=1537.9(萬平方米),∵1537.9>1500,∴2017年該市能完成計劃目標.【點睛】本題考查了一元二次方程的應用,解題關鍵是要讀懂題目的意思,根據(jù)題目給出的條件和增長率問題的數(shù)量關系,列出方程進行求解.21、【解析】分析:此題應先將原分式方程兩邊同時乘以最簡公分母,則原分式方程可化為整式方程,解出即可.詳解:去分母,得.去括號,得.移項,得.合并同類項,得.系數(shù)化為1,得.經檢驗,原方程的解為.點睛:本題主要考查分式方程的解法.注意:解分式方程必須檢驗.22、A、B兩種型號的空調購買價分別為2120元、2320元【解析】試題分析:根據(jù)題意,設出A、B兩種型號的空調購買價分別為x元、y元,然后根據(jù)“已知購買1臺A型號的空調比1臺B型號的空調少200元,購買2臺A型號的空調與3臺B型號的空調共需11200元”,列出方程求解即可.試題解析:設A、B兩種型號的空調購買價分別為x元、y元,依題意得:解得:答:A、B兩種型號的空調購買價分別為2120元、2320元23、(1),;(2)見解析;(3).【解析】
(1)連結AD、BD,利用m求出角的關系進而求出∠BCD、∠ACD的度數(shù);
(2)連結,由所給關系式結合直徑求出AP,OP,根據(jù)弦CD最短,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 幼兒園班主任辭職報告范文錦集6篇
- 小學語文六年級語文上冊教案
- 學生會宣傳部述職報告(合集11篇)
- xx省城市更新項目可行性研究報告
- 小學學校校長辭職報告合集5篇
- 城中村現(xiàn)狀分析
- 2024年水泵供應及銷售協(xié)議范本版B版
- 2024年倉庫主管個人年度工作總結模板(五篇)
- 2024年聯(lián)營合同范本
- 老舊街區(qū)改造環(huán)境影響評估
- 2024年世界職業(yè)院校技能大賽中職組“嬰幼兒保育組”賽項考試題庫-下(多選、判斷題)
- (面試)國家公務員考試試題及答案指導(2025年)
- 《生產環(huán)境與農業(yè)投入品》課程考試及答案B卷
- 五年(2020-2024)高考語文真題專項分類匯編(7份打包)(含答案)
- 2023年中國鐵路南寧局集團有限公司招聘考試真題
- 汽車底盤課件 課程3 手動變速器的構造與維修
- 2023屆河南省鄭州市高三第一次質量預測生物試題(解析版)
- python實現(xiàn)魔獸世界自動釣魚輔助工具(附源碼)
- GB/T 11017.2-2024額定電壓66 kV(Um=72.5 kV)和110 kV(Um=126 kV)交聯(lián)聚乙烯絕緣電力電纜及其附件第2部分:電纜
- DB11∕T 243-2014 戶外廣告設施技術規(guī)范
- 飛灰二惡英類低溫催化分解污染控制技術規(guī)范-編制說明(征求意見稿)
評論
0/150
提交評論