版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022屆安徽省宿州市埇橋集團(tuán)中考數(shù)學(xué)模擬預(yù)測(cè)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.下列多邊形中,內(nèi)角和是一個(gè)三角形內(nèi)角和的4倍的是()A.四邊形B.五邊形C.六邊形D.八邊形2.如圖,在矩形紙片ABCD中,已知AB=,BC=1,點(diǎn)E在邊CD上移動(dòng),連接AE,將多邊形ABCE沿直線AE折疊,得到多邊形AFGE,點(diǎn)B、C的對(duì)應(yīng)點(diǎn)分別為點(diǎn)F、G.在點(diǎn)E從點(diǎn)C移動(dòng)到點(diǎn)D的過程中,則點(diǎn)F運(yùn)動(dòng)的路徑長為()A.π B.π C.π D.π3.下列交通標(biāo)志是中心對(duì)稱圖形的為()A. B. C. D.4.某班同學(xué)畢業(yè)時(shí)都將自己的照片向全班其他同學(xué)各送一張表示留念,全班共送1035張照片,如果全班有x名同學(xué),根據(jù)題意,列出方程為()A.x(x+1)=1035 B.x(x-1)=1035 C.x(x+1)=1035 D.x(x-1)=10355.某市公園的東、西、南、北方向上各有一個(gè)入口,周末佳佳和琪琪隨機(jī)從一個(gè)入口進(jìn)入該公園游玩,則佳佳和琪琪恰好從同一個(gè)入口進(jìn)入該公園的概率是()A. B. C. D.6.中國古代在利用“計(jì)里畫方”(比例縮放和直角坐標(biāo)網(wǎng)格體系)的方法制作地圖時(shí),會(huì)利用測(cè)桿、水準(zhǔn)儀和照板來測(cè)量距離.在如圖所示的測(cè)量距離AB的示意圖中,記照板“內(nèi)芯”的高度為EF,觀測(cè)者的眼睛(圖中用點(diǎn)C表示)與BF在同一水平線上,則下列結(jié)論中,正確的是()A. B. C. D.7.一個(gè)多邊形的每個(gè)內(nèi)角都等于120°,則這個(gè)多邊形的邊數(shù)為()A.4 B.5 C.6 D.78.下列各數(shù)是不等式組的解是()A.0 B. C.2 D.39.﹣18的倒數(shù)是()A.18 B.﹣18 C.- D.10.大箱子裝洗衣粉36千克,把大箱子里的洗衣粉分裝在4個(gè)大小相同的小箱子里,裝滿后還剩余2千克洗衣粉,則每個(gè)小箱子裝洗衣粉(
)A.6.5千克B.7.5千克C.8.5千克D.9.5千克二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.計(jì)算的結(jié)果是__________.12.如圖,矩形AOCB的兩邊OC、OA分別位于x軸、y軸上,點(diǎn)B的坐標(biāo)為B(),D是AB邊上的一點(diǎn).將△ADO沿直線OD翻折,使A點(diǎn)恰好落在對(duì)角線OB上的點(diǎn)E處,若點(diǎn)E在一反比例函數(shù)的圖像上,那么k的值是_______13.如圖,AB是⊙O的直徑,點(diǎn)E是的中點(diǎn),連接AF交過E的切線于點(diǎn)D,AB的延長線交該切線于點(diǎn)C,若∠C=30°,⊙O的半徑是2,則圖形中陰影部分的面積是_____.14.如圖,四邊形ABCD是菱形,∠BAD=60°,AB=6,對(duì)角線AC與BD相交于點(diǎn)O,點(diǎn)E在AC上,若OE=2,則CE的長為_______15.拋物線y=ax2+bx+c的頂點(diǎn)為D(-1,2),與x軸的一個(gè)交點(diǎn)A在點(diǎn)(-3,1)和(-2,1)之間,其部分圖象如圖,則以下結(jié)論:①b2-4ac<1;②當(dāng)x>-1時(shí)y隨x增大而減??;③a+b+c<1;④若方程ax2+bx+c-m=1沒有實(shí)數(shù)根,則m>2;
⑤3a+c<1.其中,正確結(jié)論的序號(hào)是________________.16.如圖,矩形ABCD的面積為20cm2,對(duì)角線交于點(diǎn)O;以AB、AO為鄰邊作平行四邊形AOC1B,對(duì)角線交于點(diǎn)O1;以AB、AO1為鄰邊作平行四邊形AO1C2B;…;依此類推,則平行四邊形AO4C5B的面積為_____.三、解答題(共8題,共72分)17.(8分)如圖,在平面直角坐標(biāo)系中,等邊三角形ABC的頂點(diǎn)B與原點(diǎn)O重合,點(diǎn)C在x軸上,點(diǎn)C坐標(biāo)為(6,0),等邊三角形ABC的三邊上有三個(gè)動(dòng)點(diǎn)D、E、F(不考慮與A、B、C重合),點(diǎn)D從A向B運(yùn)動(dòng),點(diǎn)E從B向C運(yùn)動(dòng),點(diǎn)F從C向A運(yùn)動(dòng),三點(diǎn)同時(shí)運(yùn)動(dòng),到終點(diǎn)結(jié)束,且速度均為1cm/s,設(shè)運(yùn)動(dòng)的時(shí)間為ts,解答下列問題:(1)求證:如圖①,不論t如何變化,△DEF始終為等邊三角形.(2)如圖②過點(diǎn)E作EQ∥AB,交AC于點(diǎn)Q,設(shè)△AEQ的面積為S,求S與t的函數(shù)關(guān)系式及t為何值時(shí)△AEQ的面積最大?求出這個(gè)最大值.(3)在(2)的條件下,當(dāng)△AEQ的面積最大時(shí),平面內(nèi)是否存在一點(diǎn)P,使A、D、Q、P構(gòu)成的四邊形是菱形,若存在請(qǐng)直接寫出P坐標(biāo),若不存在請(qǐng)說明理由?18.(8分)如圖,AB為⊙O直徑,C為⊙O上一點(diǎn),點(diǎn)D是的中點(diǎn),DE⊥AC于E,DF⊥AB于F.(1)判斷DE與⊙O的位置關(guān)系,并證明你的結(jié)論;(2)若OF=4,求AC的長度.19.(8分)如圖,△ABC中,∠A=90°,AB=AC=4,D是BC邊上一點(diǎn),將點(diǎn)D繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到點(diǎn)E,連接CE.(1)當(dāng)點(diǎn)E在BC邊上時(shí),畫出圖形并求出∠BAD的度數(shù);(2)當(dāng)△CDE為等腰三角形時(shí),求∠BAD的度數(shù);(3)在點(diǎn)D的運(yùn)動(dòng)過程中,求CE的最小值.(參考數(shù)值:sin75°=,cos75°=,tan75°=)20.(8分)如圖,在平行四邊形ABCD中,E、F是對(duì)角線BD上的兩點(diǎn),且BF=DE.求證:AE∥CF.21.(8分)如圖,已知點(diǎn)D在△ABC的外部,AD∥BC,點(diǎn)E在邊AB上,AB?AD=BC?AE.求證:∠BAC=∠AED;在邊AC取一點(diǎn)F,如果∠AFE=∠D,求證:.22.(10分)如圖,將一張直角三角形ABC紙片沿斜邊AB上的中線CD剪開,得到△ACD,再將△ACD沿DB方向平移到△A′C′D′的位置,若平移開始后點(diǎn)D′未到達(dá)點(diǎn)B時(shí),A′C′交CD于E,D′C′交CB于點(diǎn)F,連接EF,當(dāng)四邊形EDD′F為菱形時(shí),試探究△A′DE的形狀,并判斷△A′DE與△EFC′是否全等?請(qǐng)說明理由.23.(12分)為進(jìn)一步打造“宜居重慶”,某區(qū)擬在新竣工的矩形廣場(chǎng)的內(nèi)部修建一個(gè)音樂噴泉,要求音樂噴泉M到廣場(chǎng)的兩個(gè)入口A、B的距離相等,且到廣場(chǎng)管理處C的距離等于A和B之間距離的一半,A、B、C的位置如圖所示.請(qǐng)?jiān)诖痤}卷的原圖上利用尺規(guī)作圖作出音樂噴泉M的位置.(要求:不寫已知、求作、作法和結(jié)論,保留作圖痕跡,必須用鉛筆作圖)24.(1)計(jì)算:;(2)解不等式組:
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
利用多邊形的內(nèi)角和公式列方程求解即可【詳解】設(shè)這個(gè)多邊形的邊數(shù)為n.由題意得:(n﹣2)×180°=4×180°.解得:n=1.答:這個(gè)多邊形的邊數(shù)為1.故選C.【點(diǎn)睛】本題主要考查的是多邊形的內(nèi)角和公式,掌握多邊形的內(nèi)角和公式是解題的關(guān)鍵.2、D【解析】
點(diǎn)F的運(yùn)動(dòng)路徑的長為弧FF'的長,求出圓心角、半徑即可解決問題.【詳解】如圖,點(diǎn)F的運(yùn)動(dòng)路徑的長為弧FF'的長,在Rt△ABC中,∵tan∠BAC=,∴∠BAC=30°,∵∠CAF=∠BAC=30°,∴∠BAF=60°,∴∠FAF′=120°,∴弧FF'的長=.故選D.【點(diǎn)睛】本題考查了矩形的性質(zhì)、特殊角的三角函數(shù)值、含30°角的直角三角形的性質(zhì)、弧長公式等知識(shí),解題的關(guān)鍵是判斷出點(diǎn)F運(yùn)動(dòng)的路徑.3、C【解析】
根據(jù)中心對(duì)稱圖形的定義即可解答.【詳解】解:A、屬于軸對(duì)稱圖形,不是中心對(duì)稱的圖形,不合題意;
B、是中心對(duì)稱的圖形,但不是交通標(biāo)志,不符合題意;
C、屬于軸對(duì)稱圖形,屬于中心對(duì)稱的圖形,符合題意;
D、不是中心對(duì)稱的圖形,不合題意.
故選C.【點(diǎn)睛】本題考查中心對(duì)稱圖形的定義:繞對(duì)稱中心旋轉(zhuǎn)180度后所得的圖形與原圖形完全重合.4、B【解析】試題分析:如果全班有x名同學(xué),那么每名同學(xué)要送出(x-1)張,共有x名學(xué)生,那么總共送的張數(shù)應(yīng)該是x(x-1)張,即可列出方程.∵全班有x名同學(xué),∴每名同學(xué)要送出(x-1)張;又∵是互送照片,∴總共送的張數(shù)應(yīng)該是x(x-1)=1.故選B考點(diǎn):由實(shí)際問題抽象出一元二次方程.5、B【解析】
首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果,可求得佳佳和琪琪恰好從同一個(gè)入口進(jìn)入該公園的情況,再利用概率公式求解即可求得答案.【詳解】畫樹狀圖如下:由樹狀圖可知,共有16種等可能結(jié)果,其中佳佳和琪琪恰好從同一個(gè)入口進(jìn)入該公園的有4種等可能結(jié)果,所以佳佳和琪琪恰好從同一個(gè)入口進(jìn)入該公園的概率為,故選B.【點(diǎn)睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.注意概率=所求情況數(shù)與總情況數(shù)之比.6、B【解析】分析:由平行得出相似,由相似得出比例,即可作出判斷.詳解:∵EF∥AB,∴△CEF∽△CAB,∴,故選B.點(diǎn)睛:本題考查了相似三角形的應(yīng)用,熟練掌握相似三角形的判定與性質(zhì)是解答本題的關(guān)鍵.7、C【解析】試題解析:∵多邊形的每一個(gè)內(nèi)角都等于120°,∴多邊形的每一個(gè)外角都等于180°-120°=10°,∴邊數(shù)n=310°÷10°=1.故選C.考點(diǎn):多邊形內(nèi)角與外角.8、D【解析】
求出不等式組的解集,判斷即可.【詳解】,由①得:x>-1,由②得:x>2,則不等式組的解集為x>2,即3是不等式組的解,故選D.【點(diǎn)睛】此題考查了解一元一次不等式組,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.9、C【解析】
根據(jù)乘積為1的兩個(gè)數(shù)互為倒數(shù),可得一個(gè)數(shù)的倒數(shù).【詳解】∵-18=1,∴﹣18的倒數(shù)是,故選C.【點(diǎn)睛】本題考查了倒數(shù),分子分母交換位置是求一個(gè)數(shù)的倒數(shù)的關(guān)鍵.10、C【解析】【分析】設(shè)每個(gè)小箱子裝洗衣粉x千克,根據(jù)題意列方程即可.【詳解】設(shè)每個(gè)小箱子裝洗衣粉x千克,由題意得:4x+2=36,解得:x=8.5,即每個(gè)小箱子裝洗衣粉8.5千克,故選C.【點(diǎn)睛】本題考查了列一元一次方程解實(shí)際問題,弄清題意,找出等量關(guān)系是解答本題的關(guān)鍵.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、1【解析】分析:利用同分母分式的減法法則計(jì)算,分子整理后分解因式,約分即可得到結(jié)果.詳解:原式故答案為:1.點(diǎn)睛:本題考查了分式的加減運(yùn)算,分式的加減運(yùn)算關(guān)鍵是通分,通分的關(guān)鍵是找最簡公分母.12、-12【解析】過E點(diǎn)作EF⊥OC于F,如圖所示:
由條件可知:OE=OA=5,,所以EF=3,OF=4,
則E點(diǎn)坐標(biāo)為(-4,3)
設(shè)反比例函數(shù)的解析式是y=,則有k=-4×3=-12.故答案是:-12.13、【解析】
首先根據(jù)切線的性質(zhì)及圓周角定理得CE的長以及圓周角度數(shù),進(jìn)而利用銳角三角函數(shù)關(guān)系得出DE,AD的長,利用S△ADE﹣S扇形FOE=圖中陰影部分的面積求出即可.【詳解】解:連接OE,OF、EF,∵DE是切線,∴OE⊥DE,∵∠C=30°,OB=OE=2,∴∠EOC=60°,OC=2OE=4,∴CE=OC×sin60°=∵點(diǎn)E是弧BF的中點(diǎn),∴∠EAB=∠DAE=30°,∴F,E是半圓弧的三等分點(diǎn),∴∠EOF=∠EOB=∠AOF=60°,∴OE∥AD,∠DAC=60°,∴∠ADC=90°,∵CE=AE=∴DE=,∴AD=DE×tan60°=∴S△ADE∵△FOE和△AEF同底等高,∴△FOE和△AEF面積相等,∴圖中陰影部分的面積為:S△ADE﹣S扇形FOE故答案為【點(diǎn)睛】此題主要考查了扇形的面積計(jì)算以及三角形面積求法等知識(shí),根據(jù)已知得出△FOE和△AEF面積相等是解題關(guān)鍵.14、5或【解析】分析:由菱形的性質(zhì)證出△ABD是等邊三角形,得出BD=AB=6,由勾股定理得出,即可得出答案.詳解:∵四邊形ABCD是菱形,∴AB=AD=6,AC⊥BD,OB=OD,OA=OC,∵∴△ABD是等邊三角形,∴BD=AB=6,∴∴∴∵點(diǎn)E在AC上,∴當(dāng)E在點(diǎn)O左邊時(shí)當(dāng)點(diǎn)E在點(diǎn)O右邊時(shí)∴或;故答案為或.點(diǎn)睛:考查菱形的性質(zhì),注意分類討論思想在數(shù)學(xué)中的應(yīng)用,不要漏解.15、②③④⑤【解析】試題解析:∵二次函數(shù)與x軸有兩個(gè)交點(diǎn),∴b2-4ac>1,故①錯(cuò)誤,觀察圖象可知:當(dāng)x>-1時(shí),y隨x增大而減小,故②正確,∵拋物線與x軸的另一個(gè)交點(diǎn)為在(1,1)和(1,1)之間,∴x=1時(shí),y=a+b+c<1,故③正確,∵當(dāng)m>2時(shí),拋物線與直線y=m沒有交點(diǎn),∴方程ax2+bx+c-m=1沒有實(shí)數(shù)根,故④正確,∵對(duì)稱軸x=-1=-,∴b=2a,∵a+b+c<1,∴3a+c<1,故⑤正確,故答案為②③④⑤.16、【解析】試題分析:根據(jù)矩形的性質(zhì)求出△AOB的面積等于矩形ABCD的面積的,求出△AOB的面積,再分別求出、、、的面積,即可得出答案∵四邊形ABCD是矩形,∴AO=CO,BO=DO,DC∥AB,DC=AB,∴,∴,∴,∴,,,∴考點(diǎn):矩形的性質(zhì);平行四邊形的性質(zhì)點(diǎn)評(píng):本題考查了矩形的性質(zhì),平行四邊形的性質(zhì),三角形的面積的應(yīng)用,解此題的關(guān)鍵是能根據(jù)求出的結(jié)果得出規(guī)律,注意:等底等高的三角形的面積相等三、解答題(共8題,共72分)17、(1)證明見解析;(2)當(dāng)t=3時(shí),△AEQ的面積最大為cm2;(3)(3,0)或(6,3)或(0,3)【解析】
(1)由三角形ABC為等邊三角形,以及AD=BE=CF,進(jìn)而得出三角形ADF與三角形CFE與三角形BED全等,利用全等三角形對(duì)應(yīng)邊相等得到BF=DF=DE,即可得證;(2)先表示出三角形AEC面積,根據(jù)EQ與AB平行,得到三角形CEQ與三角形ABC相似,利用相似三角形面積比等于相似比的平方表示出三角形CEQ面積,進(jìn)而表示出AEQ面積,利用二次函數(shù)的性質(zhì)求出面積最大值,并求出此時(shí)Q的坐標(biāo)即可;(3)當(dāng)△AEQ的面積最大時(shí),D、E、F都是中點(diǎn),分兩種情形討論即可解決問題;【詳解】(1)如圖①中,∵C(6,0),∴BC=6在等邊三角形ABC中,AB=BC=AC=6,∠A=∠B=∠C=60°,由題意知,當(dāng)0<t<6時(shí),AD=BE=CF=t,∴BD=CE=AF=6﹣t,∴△ADF≌△CFE≌△BED(SAS),∴EF=DF=DE,∴△DEF是等邊三角形,∴不論t如何變化,△DEF始終為等邊三角形;(2)如圖②中,作AH⊥BC于H,則AH=AB?sin60°=3,∴S△AEC=×3×(6﹣t)=,∵EQ∥AB,∴△CEQ∽△ABC,∴=()2=,即S△CEQ=S△ABC=×9=,∴S△AEQ=S△AEC﹣S△CEQ=﹣=﹣(t﹣3)2+,∵a=﹣<0,∴拋物線開口向下,有最大值,∴當(dāng)t=3時(shí),△AEQ的面積最大為cm2,(3)如圖③中,由(2)知,E點(diǎn)為BC的中點(diǎn),線段EQ為△ABC的中位線,當(dāng)AD為菱形的邊時(shí),可得P1(3,0),P3(6,3),當(dāng)AD為對(duì)角線時(shí),P2(0,3),綜上所述,滿足條件的點(diǎn)P坐標(biāo)為(3,0)或(6,3)或(0,3).【點(diǎn)睛】本題考查四邊形綜合題、等邊三角形的性質(zhì)和判定、菱形的判定和性質(zhì)、二次函數(shù)的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)構(gòu)建二次函數(shù)解決最值問題,學(xué)會(huì)用分類討論的思想思考問題,屬于中考?jí)狠S題.18、(1)DE與⊙O相切,證明見解析;(2)AC=8.【解析】(1)解:(1)DE與⊙O相切.證明:連接OD、AD,∵點(diǎn)D是的中點(diǎn),∴=,∴∠DAO=∠DAC,∵OA=OD,∴∠DAO=∠ODA,∴∠DAC=∠ODA,∴OD∥AE,∵DE⊥AC,∴DE⊥OD,∴DE與⊙O相切.(2)連接BC,根據(jù)△ODF與△ABC相似,求得AC的長.AC=819、(1)∠BAD=15°;(2)∠BAC=45°或∠BAD=60°;(3)CE=.【解析】
(1)如圖1中,當(dāng)點(diǎn)E在BC上時(shí).只要證明△BAD≌△CAE,即可推出∠BAD=∠CAE=(90°-60°)=15°;(2)分兩種情形求解①如圖2中,當(dāng)BD=DC時(shí),易知AD=CD=DE,此時(shí)△DEC是等腰三角形.②如圖3中,當(dāng)CD=CE時(shí),△DEC是等腰三角形;(3)如圖4中,當(dāng)E在BC上時(shí),E記為E′,D記為D′,連接EE′.作CM⊥EE′于M,E′N⊥AC于N,DE交AE′于O.首先確定點(diǎn)E的運(yùn)動(dòng)軌跡是直線EE′(過點(diǎn)E與BC成60°角的直線上),可得EC的最小值即為線段CM的長(垂線段最短).【詳解】解:(1)如圖1中,當(dāng)點(diǎn)E在BC上時(shí).
∵AD=AE,∠DAE=60°,∴△ADE是等邊三角形,∴∠ADE=∠AED=60°,∴∠ADB=∠AEC=120°,∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,在△ABD和△ACE中,∠B=∠C,∠ADB=∠AEC,AB=AC,∴△BAD≌△CAE,∴∠BAD=∠CAE=(90°-60°)=15°.(2)①如圖2中,當(dāng)BD=DC時(shí),易知AD=CD=DE,此時(shí)△DEC是等腰三角形,∠BAD=∠BAC=45°.
②如圖3中,當(dāng)CD=CE時(shí),△DEC是等腰三角形.∵AD=AE,∴AC垂直平分線段DE,∴∠ACD=∠ACE=45°,∴∠DCE=90°,∴∠EDC=∠CED=45°,∵∠B=45°,∴∠EDC=∠B,∴DE∥AB,∴∠BAD=∠ADE=60°.
(3)如圖4中,當(dāng)E在BC上時(shí),E記為E′,D記為D′,連接EE′.作CM⊥EE′于M,E′N⊥AC于N,DE交AE′于O.
∵∠AOE=∠DOE′,∠AE′D=∠AEO,∴△AOE∽△DOE′,∴AO:OD=EO:OE',∴AO:EO=OD:OE',∵∠AOD=∠EOE′,∴△AOD∽△EOE′,∴∠EE′O=∠ADO=60°,∴點(diǎn)E的運(yùn)動(dòng)軌跡是直線EE′(過點(diǎn)E與BC成60°角的直線上),∴EC的最小值即為線段CM的長(垂線段最短),設(shè)E′N=CN=a,則AN=4-a,在Rt△ANE′中,tan75°=AN:NE',∴2+=,∴a=2-,∴CE′=CN=2-.在Rt△CE′M中,CM=CE′?cos30°=,∴CE的最小值為.【點(diǎn)睛】本題考查幾何變換綜合題、等腰直角三角形的性質(zhì)、等邊三角形的性質(zhì)、全等三角形的判定和性質(zhì)、相似三角形的判定和性質(zhì)、軌跡等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問題,學(xué)會(huì)用分類討論的思想思考問題,學(xué)會(huì)利用垂線段最短解決最值問題,屬于中考?jí)狠S題.20、證明見解析【解析】試題分析:通過全等三角形△ADE≌△CBF的對(duì)應(yīng)角相等證得∠AED=∠CFB,則由平行線的判定證得結(jié)論.證明:∵平行四邊形ABCD中,AD=BC,AD∥BC,∴∠ADE=∠CBF.∵在△ADE與△CBF中,AD=BC,∠ADE=∠CBF,DE=BF,∴△ADE≌△CBF(SAS).∴∠AED=∠CFB.∴AE∥CF.21、見解析【解析】
(1)欲證明∠BAC=∠AED,只要證明△CBA∽△DAE即可;(2)由△DAE∽△CBA,可得,再證明四邊形ADEF是平行四邊形,推出DE=AF,即可解決問題;【詳解】證明(1)∵AD∥BC,∴∠B=∠DAE,∵AB·AD=BC·AE,∴,∴△CBA∽△DAE,∴∠BAC=∠AED.(2)由
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 平搖三輪車行業(yè)市場(chǎng)發(fā)展及發(fā)展趨勢(shì)與投資戰(zhàn)略研究報(bào)告
- 2025年中國玻璃鋼錨桿行業(yè)市場(chǎng)調(diào)查研究及發(fā)展戰(zhàn)略規(guī)劃報(bào)告
- 產(chǎn)30萬噸干粉砂漿可行性研究報(bào)告
- 中國斑馬魚養(yǎng)殖行業(yè)市場(chǎng)調(diào)查研究及投資前景預(yù)測(cè)報(bào)告
- 2025年中國新鮮包裝行業(yè)發(fā)展趨勢(shì)及投資前景預(yù)測(cè)報(bào)告
- 工程造價(jià)實(shí)習(xí)報(bào)告日?qǐng)?bào)5范文
- 2021-2026年中國紅霉素市場(chǎng)競爭態(tài)勢(shì)及投資戰(zhàn)略規(guī)劃研究報(bào)告
- 雞和蛋的主題課程設(shè)計(jì)
- 調(diào)幅收音機(jī)課程設(shè)計(jì)
- 美麗的海魚美術(shù)課程設(shè)計(jì)
- 【閱讀提升】部編版語文五年級(jí)下冊(cè)第五單元閱讀要素解析 類文閱讀課外閱讀過關(guān)(含答案)
- 四年級(jí)上數(shù)學(xué)計(jì)算題100道可打印
- 廣東省廣州市天河區(qū)2023-2024學(xué)年高二上學(xué)期期末考試英語試題(解析版)
- 地震預(yù)警安裝方案
- 投石機(jī)(課件)-小學(xué)拓展
- 光伏并網(wǎng)前單位工程驗(yàn)收?qǐng)?bào)告-2023
- 挖掘機(jī)運(yùn)輸方案
- 民企廉潔培訓(xùn)課件
- 飛書使用培訓(xùn)課件
- 高血壓急癥的緊急處理與護(hù)理
- 接地隱蔽記錄表
評(píng)論
0/150
提交評(píng)論