版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖南省長沙麓山國際實驗校2022年中考三模數(shù)學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.將2001×1999變形正確的是()A.20002﹣1 B.20002+1 C.20002+2×2000+1 D.20002﹣2×2000+12.的負倒數(shù)是()A. B.- C.3 D.﹣33.如圖,向四個形狀不同高同為h的水瓶中注水,注滿為止.如果注水量V(升)與水深h(厘米)的函數(shù)關系圖象如圖所示,那么水瓶的形狀是()A. B. C. D.4.某校數(shù)學興趣小組在一次數(shù)學課外活動中,隨機抽查該校10名同學參加今年初中學業(yè)水平考試的體育成績,得到結果如下表所示:下列說法正確的是()A.這10名同學體育成績的中位數(shù)為38分B.這10名同學體育成績的平均數(shù)為38分C.這10名同學體育成績的眾數(shù)為39分D.這10名同學體育成績的方差為25.如圖,一個斜坡長130m,坡頂離水平地面的距離為50m,那么這個斜坡的坡度為(
)A. B. C. D.6.如圖,將一副三角板如此擺放,使得BO和CD平行,則∠AOD的度數(shù)為()A.10° B.15° C.20° D.25°7.如圖,將矩形ABCD沿EM折疊,使頂點B恰好落在CD邊的中點N上.若AB=6,AD=9,則五邊形ABMND的周長為()A.28 B.26 C.25 D.228.關于x的一元二次方程x2+3x+m=0有兩個不相等的實數(shù)根,則A.m≤94B.m<949.已知A樣本的數(shù)據(jù)如下:72,73,76,76,77,78,78,78,B樣本的數(shù)據(jù)恰好是A樣本數(shù)據(jù)每個都加2,則A,B兩個樣本的下列統(tǒng)計量對應相同的是()A.平均數(shù) B.標準差 C.中位數(shù) D.眾數(shù)10.若一個正多邊形的每個內角為150°,則這個正多邊形的邊數(shù)是()A.12 B.11 C.10 D.9二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在矩形ABCD中,過點A的圓O交邊AB于點E,交邊AD于點F,已知AD=5,AE=2,AF=1.如果以點D為圓心,r為半徑的圓D與圓O有兩個公共點,那么r的取值范圍是______.12.如圖,△ABC中,∠A=80°,∠B=40°,BC的垂直平分線交AB于點D,聯(lián)結DC.如果AD=2,BD=6,那么△ADC的周長為.13.計算的結果是__________.14.已知△ABC中,∠C=90°,AB=9,,把△ABC繞著點C旋轉,使得點A落在點A′,點B落在點B′.若點A′在邊AB上,則點B、B′的距離為_____.15.一次函數(shù)y=kx+b的圖像如圖所示,則當kx+b>0時,x的取值范圍為___________.16.某個“清涼小屋”自動售貨機出售A、B、C三種飲料.A、B、C三種飲料的單價分別是2元/瓶、3元/瓶、5元/瓶.工作日期間,每天上貨量是固定的,且能全部售出,其中,A飲科的數(shù)量(單位:瓶)是B飲料數(shù)量的2倍,B飲料的數(shù)量(單位:瓶)是C飲料數(shù)量的2倍.某個周六,A、B、C三種飲料的上貨量分別比一個工作日的上貨量增加了50%、60%、50%,且全部售出.但是由于軟件bug,發(fā)生了一起錯單(即消費者按某種飲料一瓶的價格投幣,但是取得了另一種飲料1瓶),結果這個周六的銷售收入比一個工作日的銷售收入多了503元.則這個“清涼小屋”自動售貨機一個工作日的銷售收入是_____元.三、解答題(共8題,共72分)17.(8分)如圖,已知矩形ABCD中,AB=3,AD=m,動點P從點D出發(fā),在邊DA上以每秒1個單位的速度向點A運動,連接CP,作點D關于直線PC的對稱點E,設點P的運動時間為t(s).(1)若m=5,求當P,E,B三點在同一直線上時對應的t的值.(2)已知m滿足:在動點P從點D到點A的整個運動過程中,有且只有一個時刻t,使點E到直線BC的距離等于2,求所有這樣的m的取值范圍.18.(8分)如圖,在△ABC中,AB=AC=1,BC=5-1(1)通過計算,判斷AD2與AC?CD的大小關系;(2)求∠ABD的度數(shù).19.(8分)解方程:(1)x2﹣7x﹣18=0(2)3x(x﹣1)=2﹣2x20.(8分)在△ABC中,∠A,∠B都是銳角,且sinA=,tanB=,AB=10,求△ABC的面積.21.(8分)如圖,一次函數(shù)的圖象與反比例函數(shù)(為常數(shù),且)的圖象交于A(1,a)、B兩點.求反比例函數(shù)的表達式及點B的坐標;在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標及△PAB的面積.22.(10分)如圖,是一座古拱橋的截面圖,拱橋橋洞的上沿是拋物線形狀,當水面的寬度為10m時,橋洞與水面的最大距離是5m.經過討論,同學們得出三種建立平面直角坐標系的方案(如圖),你選擇的方案是(填方案一,方案二,或方案三),則B點坐標是,求出你所選方案中的拋物線的表達式;因為上游水庫泄洪,水面寬度變?yōu)?m,求水面上漲的高度.23.(12分)如圖所示,已知,試判斷與的大小關系,并說明理由.24.解方程:x2-4x-5=0
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】
原式變形后,利用平方差公式計算即可得出答案.【詳解】解:原式=(2000+1)×(2000-1)=20002-1,故選A.【點睛】此題考查了平方差公式,熟練掌握平方差公式是解本題的關鍵.2、D【解析】
根據(jù)倒數(shù)的定義,互為倒數(shù)的兩數(shù)乘積為1,2×=1.再求出2的相反數(shù)即可解答.【詳解】根據(jù)倒數(shù)的定義得:2×=1.
因此的負倒數(shù)是-2.
故選D.【點睛】本題考查了倒數(shù),解題的關鍵是掌握倒數(shù)的概念.3、D【解析】
根據(jù)一次函數(shù)的性質結合題目中的條件解答即可.【詳解】解:由題可得,水深與注水量之間成正比例關系,∴隨著水的深度變高,需要的注水量也是均勻升高,∴水瓶的形狀是圓柱,故選:D.【點睛】此題重點考查學生對一次函數(shù)的性質的理解,掌握一次函數(shù)的性質是解題的關鍵.4、C【解析】試題分析:10名學生的體育成績中39分出現(xiàn)的次數(shù)最多,眾數(shù)為39;第5和第6名同學的成績的平均值為中位數(shù),中位數(shù)為:=39;平均數(shù)==38.4方差=[(36﹣38.4)2+2×(37﹣38.4)2+(38﹣38.4)2+4×(39﹣38.4)2+2×(40﹣38.4)2]=1.64;∴選項A,B、D錯誤;故選C.考點:方差;加權平均數(shù);中位數(shù);眾數(shù).5、A【解析】試題解析:∵一個斜坡長130m,坡頂離水平地面的距離為50m,∴這個斜坡的水平距離為:=10m,∴這個斜坡的坡度為:50:10=5:1.故選A.點睛:本題考查解直角三角形的應用-坡度坡角問題,解題的關鍵是明確坡度的定義.坡度是坡面的鉛直高度h和水平寬度l的比,又叫做坡比,它是一個比值,反映了斜坡的陡峭程度,一般用i表示,常寫成i=1:m的形式.6、B【解析】
根據(jù)題意可知,∠AOB=∠ABO=45°,∠DOC=30°,再根據(jù)平行線的性質即可解答【詳解】根據(jù)題意可知∠AOB=∠ABO=45°,∠DOC=30°∵BO∥CD∴∠BOC=∠DCO=90°∴∠AOD=∠BOC-∠AOB-∠DOC=90°-45°-30°=15°故選B【點睛】此題考查三角形內角和,平行線的性質,解題關鍵在于利用平行線的性質得到角相等7、A【解析】
如圖,運用矩形的性質首先證明CN=3,∠C=90°;運用翻折變換的性質證明BM=MN(設為λ),運用勾股定理列出關于λ的方程,求出λ,即可解決問題.【詳解】如圖,由題意得:BM=MN(設為λ),CN=DN=3;∵四邊形ABCD為矩形,∴BC=AD=9,∠C=90°,MC=9-λ;由勾股定理得:λ2=(9-λ)2+32,解得:λ=5,∴五邊形ABMND的周長=6+5+5+3+9=28,故選A.【點睛】該題主要考查了翻折變換的性質、矩形的性質、勾股定理等幾何知識點及其應用問題;解題的關鍵是靈活運用翻折變換的性質、矩形的性質、勾股定理等幾何知識點來分析、判斷、推理或解答.8、B【解析】試題分析:根據(jù)題意得△=32﹣4m>0,解得m<94故選B.考點:根的判別式.點睛:本題考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c為常數(shù))的根的判別式△=b2-4ac.當△>0,方程有兩個不相等的實數(shù)根;當△=0,方程有兩個相等的實數(shù)根;當△<0,方程沒有實數(shù)根.9、B【解析】試題分析:根據(jù)樣本A,B中數(shù)據(jù)之間的關系,結合眾數(shù),平均數(shù),中位數(shù)和標準差的定義即可得到結論:設樣本A中的數(shù)據(jù)為xi,則樣本B中的數(shù)據(jù)為yi=xi+2,則樣本數(shù)據(jù)B中的眾數(shù)和平均數(shù)以及中位數(shù)和A中的眾數(shù),平均數(shù),中位數(shù)相差2,只有標準差沒有發(fā)生變化.故選B.考點:統(tǒng)計量的選擇.10、A【解析】
根據(jù)正多邊形的外角與它對應的內角互補,得到這個正多邊形的每個外角=180°﹣150°=30°,再根據(jù)多邊形外角和為360度即可求出邊數(shù).【詳解】∵一個正多邊形的每個內角為150°,∴這個正多邊形的每個外角=180°﹣150°=30°,∴這個正多邊形的邊數(shù)==1.故選:A.【點睛】本題考查了正多邊形的外角與它對應的內角互補的性質;也考查了多邊形外角和為360度以及正多邊形的性質.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】
因為以點D為圓心,r為半徑的圓D與圓O有兩個公共點,則圓D與圓O相交,圓心距滿足關系式:|R-r|<d<R+r,求得圓D與圓O的半徑代入計算即可.【詳解】連接OA、OD,過O點作ON⊥AE,OM⊥AF.AN=AE=1,AM=AF=2,MD=AD-AM=3∵四邊形ABCD是矩形∴∠BAD=∠ANO=∠AMO=90°,∴四邊形OMAN是矩形∴OM=AN=1∴OA=,OD=∵以點D為圓心,r為半徑的圓D與圓O有兩個公共點,則圓D與圓O相交∴【點睛】本題考查了圓與圓相交的條件,熟記圓與圓相交時圓的半徑與圓心距的關系是關鍵.12、1.【解析】試題分析:由BC的垂直平分線交AB于點D,可得CD=BD=6,又由等邊對等角,可求得∠BCD的度數(shù),繼而求得∠ADC的度數(shù),則可判定△ACD是等腰三角形,繼而求得答案.試題解析:∵BC的垂直平分線交AB于點D,∴CD=BD=6,∴∠DCB=∠B=40°,∴∠ADC=∠B+∠BCD=80°,∴∠ADC=∠A=80°,∴AC=CD=6,∴△ADC的周長為:AD+DC+AC=2+6+6=1.考點:1.線段垂直平分線的性質;2.等腰三角形的判定與性質.13、1【解析】分析:利用同分母分式的減法法則計算,分子整理后分解因式,約分即可得到結果.詳解:原式故答案為:1.點睛:本題考查了分式的加減運算,分式的加減運算關鍵是通分,通分的關鍵是找最簡公分母.14、4【解析】
過點C作CH⊥AB于H,利用解直角三角形的知識,分別求出AH、AC、BC的值,進而利用三線合一的性質得出AA'的值,然后利用旋轉的性質可判定△ACA'∽△BCB',繼而利用相似三角形的對應邊成比例的性質可得出BB'的值.【詳解】解:過點C作CH⊥AB于H,
∵在Rt△ABC中,∠C=90,cosA=,
∴AC=AB?cosA=6,BC=3,
在Rt△ACH中,AC=6,cosA=,
∴AH=AC?cosA=4,
由旋轉的性質得,AC=A'C,BC=B'C,
∴△ACA'是等腰三角形,因此H也是AA'中點,
∴AA'=2AH=8,
又∵△BCB'和△ACA'都為等腰三角形,且頂角∠ACA'和∠BCB'都是旋轉角,
∴∠ACA'=∠BCB',
∴△ACA'∽△BCB',∴即,解得:BB'=4.故答案為:4.【點睛】此題考查了解直角三角形、旋轉的性質、勾股定理、等腰三角形的性質、相似三角形的判定與性質,解答本題的關鍵是得出△ACA'∽△BCB'.15、x>1【解析】分析:題目要求kx+b>0,即一次函數(shù)的圖像在x軸上方時,觀察圖象即可得x的取值范圍.詳解:∵kx+b>0,∴一次函數(shù)的圖像在x軸上方時,∴x的取值范圍為:x>1.故答案為x>1.點睛:本題考查了一次函數(shù)與一元一次不等式的關系,主要考查學生的觀察視圖能力.16、950【解析】
設工作日期間C飲料數(shù)量為x瓶,則B飲料數(shù)量為2x瓶,A飲料數(shù)量為4x瓶,得到工作日期間一天的銷售收入為:8x+6x+5x=19x元,和周六銷售銷售收入為:12x+9.6x+7.5x=29.1x元,再結合題意得到10.1x﹣(5﹣3)=503,計算即可得到答案.【詳解】解:設工作日期間C飲料數(shù)量為x瓶,則B飲料數(shù)量為2x瓶,A飲料數(shù)量為4x瓶,工作日期間一天的銷售收入為:8x+6x+5x=19x元,周六C飲料數(shù)量為1.5x瓶,則B飲料數(shù)量為3.2x瓶,A飲料數(shù)量為6x瓶,周六銷售銷售收入為:12x+9.6x+7.5x=29.1x元,周六銷售收入與工作日期間一天銷售收入的差為:29.1x﹣19x=10.1x元,由于發(fā)生一起錯單,收入的差為503元,因此,503加減一瓶飲料的差價一定是10.1的整數(shù)倍,所以這起錯單發(fā)生在B、C飲料上(B、C一瓶的差價為2元),且是消費者付B飲料的錢,取走的是C飲料;于是有:10.1x﹣(5﹣3)=503解得:x=50工作日期間一天的銷售收入為:19×50=950元,故答案為:950.【點睛】本題考查一元一次方程的實際應用,解題的關鍵是由題意得到等量關系.三、解答題(共8題,共72分)17、(1)1;(1)≤m<.【解析】
(1)在Rt△ABP中利用勾股定理即可解決問題;(1)分兩種情形求出AD的值即可解決問題:①如圖1中,當點P與A重合時,點E在BC的下方,點E到BC的距離為1.②如圖3中,當點P與A重合時,點E在BC的上方,點E到BC的距離為1.【詳解】解:(1):(1)如圖1中,設PD=t.則PA=5-t.
∵P、B、E共線,
∴∠BPC=∠DPC,
∵AD∥BC,
∴∠DPC=∠PCB,
∴∠BPC=∠PCB,
∴BP=BC=5,
在Rt△ABP中,∵AB1+AP1=PB1,
∴31+(5-t)1=51,
∴t=1或9(舍棄),∴t=1時,B、E、P共線.(1)如圖1中,當點P與A重合時,點E在BC的下方,點E到BC的距離為1.作EQ⊥BC于Q,EM⊥DC于M.則EQ=1,CE=DC=3易證四邊形EMCQ是矩形,∴CM=EQ=1,∠M=90°,∴EM=,∵∠DAC=∠EDM,∠ADC=∠M,∴△ADC∽△DME,∴∴∴AD=,如圖3中,當點P與A重合時,點E在BC的上方,點E到BC的距離為1.作EQ⊥BC于Q,延長QE交AD于M.則EQ=1,CE=DC=3在Rt△ECQ中,QC=DM=,由△DME∽△CDA,∴∴,∴AD=,綜上所述,在動點P從點D到點A的整個運動過程中,有且只有一個時刻t,使點E到直線BC的距離等于1,這樣的m的取值范圍≤m<.【點睛】本題考查四邊形綜合問題,根據(jù)題意作出圖形,熟練運用勾股定理和相似三角形的性質是本題的關鍵.18、(1)AD2=AC?CD.(2)36°.【解析】試題分析:(1)通過計算得到AD2=(2)由AD2=AC?CD,得到BC2設∠A=∠ABD=x,則∠BDC=2x,∠ABC=∠C=∠BDC=2x,由三角形內角和等于180°,解得:x=36°,從而得到結論.試題解析:(1)∵AD=BC=,∴AD2=(5-1∵AC=1,∴CD=1-5-12=3-(2)∵AD2=AC?CD,∴BC2設∠A=∠ABD=x,則∠BDC=∠A+∠ABD=2x,∴∠ABC=∠C=∠BDC=2x,∴∠A+∠ABC+∠C=x+2x+2x=180°,解得:x=36°,∴∠ABD=36°.考點:相似三角形的判定與性質.19、(1)x1=9,x2=﹣2;(2)x1=1,x2=﹣.【解析】
(1)先分解因式,即可得出兩個一元一次方程,求出方程的解即可;(2)移項后分解因式,即可得出兩個一元一次方程,求出方程的解即可.【詳解】解:(1)x2﹣7x﹣18=0,(x﹣9)(x+2)=0,x﹣9=0,x+2=0,x1=9,x2=﹣2;(2)3x(x﹣1)=2﹣2x,3x(x﹣1)+2(x﹣1)=0,(x﹣1)(3x+2)=0,x﹣1=0,3x+2=0,x1=1,x2=﹣.【點睛】本題考查了解一元二次方程,熟練掌握因式分解法是解此題的關鍵.20、【解析】
根據(jù)已知得該三角形為直角三角形,利用三角函數(shù)公式求出各邊的值,再利用三角形的面積公式求解.【詳解】如圖:由已知可得:∠A=30°,∠B=60°,∴△ABC為直角三角形,且∠C=90°,AB=10,∴BC=AB·sin30°=10=5,AC=AB·cos30°=10=,∴S△ABC=.【點睛】本題考查了解直角三角形:在直角三角形中,由已知元素求未知元素的過程就是解直角三角形.21、(1),;(2)P,.【解析】試題分析:(1)由點A在一次函數(shù)圖象上,結合一次函數(shù)解析式可求出點A的坐標,再由點A的坐標利用待定系數(shù)法即可求出反比例函數(shù)解析式,聯(lián)立兩函數(shù)解析式成方程組,解方程組即可求出點B坐標;(2)作點B作關于x軸的對稱點D,交x軸于點C,連接AD,交x軸于點P,連接PB.由點B、D的對稱性結合點B的坐標找出點D的坐標,設直線AD的解析式為y=mx+n,結合點A、D的坐標利用待定系數(shù)法求出直線AD的解析式,令直線AD的解析式中y=0求出點P的坐標,再通過分割圖形結合三角形的面積公式即可得出結論.試題解析:(1)把點A(1,a)代入一次函數(shù)y=-x+4,得:a=-1+4,解得:a=3,∴點A的坐標為(1,3).把點A(1,3)代入反比例函數(shù)y=,得:3=k,∴反比例函數(shù)的表達式y(tǒng)=,聯(lián)立兩個函數(shù)關系式成方程組得:,解得:,或,∴點B的坐標為(3,1).(2)作點B作關于x軸的對稱點D,交x軸于點C,連接AD,交x軸于點P,此時PA+PB的值最小,連接PB,如圖所示.∵點B、D關于x軸對稱,點B的坐標為(3,1),∴點D的坐標為(3,-1).設直線AD的解析式為y=mx+n,把A,D兩點代入得:,解得:,∴直線AD的解析式為y=-2x+1.令y=-2x+1中y=0,則-2x+1=0,解得:x=,∴點P的坐標為(,0).S
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 個人抵押借款簡單合同(2024版)
- 二零二五版電子數(shù)碼產品門店承包經營合同4篇
- 2025年度紡織行業(yè)原材料電商直采服務合同3篇
- 馬鈴薯購銷2025版:年度種植收購合同2篇
- 二零二五版苗圃場技術員園藝栽培技術聘用合同4篇
- 情感溝通解決客戶投訴的關鍵技巧
- 長春科技學院《健“聲”》2023-2024學年第一學期期末試卷
- 長春工程學院《大學基礎讀寫4》2023-2024學年第一學期期末試卷
- 二零二五版車輛抵押反擔保車輛租賃擔保協(xié)議2篇
- 二零二五版房地產開發(fā)與文化藝術合作協(xié)議3篇
- 2023年版《安寧療護實踐指南(試行)》解讀課件
- AQ6111-2023個體防護裝備安全管理規(guī)范
- 2024年高考語文備考之??甲骷易髌罚ㄏ拢褐袊F(xiàn)當代、外國
- T-CSTM 01124-2024 油氣管道工程用工廠預制袖管三通
- 2019版新人教版高中英語必修+選擇性必修共7冊詞匯表匯總(帶音標)
- 新譯林版高中英語必修二全冊短語匯總
- 基于自適應神經網絡模糊推理系統(tǒng)的游客規(guī)模預測研究
- 河道保潔服務投標方案(完整技術標)
- 品管圈(QCC)案例-縮短接臺手術送手術時間
- 精神科病程記錄
- 閱讀理解特訓卷-英語四年級上冊譯林版三起含答案
評論
0/150
提交評論