2021-2022學年江蘇省南京二十九中學中考數(shù)學全真模擬試卷含解析_第1頁
2021-2022學年江蘇省南京二十九中學中考數(shù)學全真模擬試卷含解析_第2頁
2021-2022學年江蘇省南京二十九中學中考數(shù)學全真模擬試卷含解析_第3頁
2021-2022學年江蘇省南京二十九中學中考數(shù)學全真模擬試卷含解析_第4頁
2021-2022學年江蘇省南京二十九中學中考數(shù)學全真模擬試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2021-2022學年江蘇省南京二十九中學中考數(shù)學全真模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.一個多邊形的邊數(shù)由原來的3增加到n時(n>3,且n為正整數(shù)),它的外角和()A.增加(n﹣2)×180° B.減小(n﹣2)×180°C.增加(n﹣1)×180° D.沒有改變2.某校八(2)班6名女同學的體重(單位:kg)分別為35,36,38,40,42,42,則這組數(shù)據(jù)的中位數(shù)是()A.38 B.39 C.40 D.423.的平方根是()A.2 B. C.±2 D.±4.實數(shù)a,b,c在數(shù)軸上對應(yīng)點的位置如圖所示,則下列結(jié)論中正確的是()A.a(chǎn)+c>0 B.b+c>0 C.a(chǎn)c>bc D.a(chǎn)﹣c>b﹣c5.下列計算結(jié)果為a6的是()A.a(chǎn)2?a3B.a(chǎn)12÷a2C.(a2)3D.(﹣a2)36.如圖,經(jīng)過測量,C地在A地北偏東46°方向上,同時C地在B地北偏西63°方向上,則∠C的度數(shù)為()A.99° B.109° C.119° D.129°7.下列說法中,正確的個數(shù)共有()(1)一個三角形只有一個外接圓;(2)圓既是軸對稱圖形,又是中心對稱圖形;(3)在同圓中,相等的圓心角所對的弧相等;(4)三角形的內(nèi)心到該三角形三個頂點距離相等;A.1個B.2個C.3個D.4個8.如圖,直線m∥n,∠1=70°,∠2=30°,則∠A等于(

)A.30° B.35° C.40° D.50°9.對于代數(shù)式ax2+bx+c(a≠0),下列說法正確的是()①如果存在兩個實數(shù)p≠q,使得ap2+bp+c=aq2+bq+c,則a+bx+c=a(x-p)(x-q)②存在三個實數(shù)m≠n≠s,使得am2+bm+c=an2+bn+c=as2+bs+c③如果ac<0,則一定存在兩個實數(shù)m<n,使am2+bm+c<0<an2+bn+c④如果ac>0,則一定存在兩個實數(shù)m<n,使am2+bm+c<0<an2+bn+cA.③ B.①③ C.②④ D.①③④10.已知一元二次方程x2-8x+15=0的兩個解恰好分別是等腰△ABC的底邊長和腰長,則△ABC的周長為()A.13 B.11或13 C.11 D.12二、填空題(本大題共6個小題,每小題3分,共18分)11.若分式a2-9a+3的值為0,則a的值是12.實數(shù),﹣3,,,0中的無理數(shù)是_____.13.在平面直角坐標系內(nèi),一次函數(shù)與的圖像之間的距離為3,則b的值為__________.14.關(guān)于的分式方程的解為正數(shù),則的取值范圍是___________.15.如圖,扇形OAB的圓心角為30°,半徑為1,將它沿箭頭方向無滑動滾動到O′A′B′的位置時,則點O到點O′所經(jīng)過的路徑長為_____.16.一組數(shù)據(jù)10,10,9,8,x的平均數(shù)是9,則這列數(shù)據(jù)的極差是_____.三、解答題(共8題,共72分)17.(8分)如圖,一次函數(shù)y=kx+b的圖象與二次函數(shù)y=﹣x2+c的圖象相交于A(﹣1,2),B(2,n)兩點.(1)求一次函數(shù)和二次函數(shù)的解析式;(2)根據(jù)圖象直接寫出使二次函數(shù)的值大于一次函數(shù)的值的x的取值范圍;(3)設(shè)二次函數(shù)y=﹣x2+c的圖象與y軸相交于點C,連接AC,BC,求△ABC的面積.18.(8分)解方程組19.(8分)如圖,△ABC是⊙O的內(nèi)接三角形,點D在上,點E在弦AB上(E不與A重合),且四邊形BDCE為菱形.(1)求證:AC=CE;(2)求證:BC2﹣AC2=AB?AC;(1)已知⊙O的半徑為1.①若=,求BC的長;②當為何值時,AB?AC的值最大?20.(8分)如圖,在△ABC中,點D在邊BC上,聯(lián)結(jié)AD,∠ADB=∠CDE,DE交邊AC于點E,DE交BA延長線于點F,且AD2=DE?DF.(1)求證:△BFD∽△CAD;(2)求證:BF?DE=AB?AD.21.(8分)在平面直角坐標系中,O為原點,點A(8,0)、點B(0,4),點C、D分別是邊OA、AB的中點.將△ACD繞點A順時針方向旋轉(zhuǎn),得△AC′D′,記旋轉(zhuǎn)角為α.(I)如圖①,連接BD′,當BD′∥OA時,求點D′的坐標;(II)如圖②,當α=60°時,求點C′的坐標;(III)當點B,D′,C′共線時,求點C′的坐標(直接寫出結(jié)果即可).22.(10分)樓房AB后有一假山,其坡度為i=1:,山坡坡面上E點處有一休息亭,測得假山坡腳C與樓房水平距離BC=30米,與亭子距離CE=18米,小麗從樓房頂測得E點的俯角為45°,求樓房AB的高.(注:坡度i是指坡面的鉛直高度與水平寬度的比)23.(12分)如圖,學校的實驗樓對面是一幢教學樓,小敏在實驗樓的窗口C測得教學樓頂部D的仰角為18°,教學樓底部B的俯角為20°,量得實驗樓與教學樓之間的距離AB=30m.(1)求∠BCD的度數(shù).(2)求教學樓的高BD.(結(jié)果精確到0.1m,參考數(shù)據(jù):tan20°≈0.36,tan18°≈0.32)24.我校春晚遴選男女主持人各一名,甲乙丙三班各派出一名男生和一名女生去參加主持人精選。(1)選中的男主持人為甲班的頻率是(2)選中的男女主持人均為甲班的概率是多少?(用樹狀圖或列表)

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

根據(jù)多邊形的外角和等于360°,與邊數(shù)無關(guān)即可解答.【詳解】∵多邊形的外角和等于360°,與邊數(shù)無關(guān),∴一個多邊形的邊數(shù)由3增加到n時,其外角度數(shù)的和還是360°,保持不變.故選D.【點睛】本題考查了多邊形的外角和,熟知多邊形的外角和等于360°是解題的關(guān)鍵.2、B【解析】

根據(jù)中位數(shù)的定義求解,把數(shù)據(jù)按大小排列,第3、4個數(shù)的平均數(shù)為中位數(shù).【詳解】解:由于共有6個數(shù)據(jù),

所以中位數(shù)為第3、4個數(shù)的平均數(shù),即中位數(shù)為=39,

故選:B.【點睛】本題主要考查了中位數(shù).要明確定義:將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻螅暨@組數(shù)據(jù)的個數(shù)是奇數(shù),則最中間的那個數(shù)叫做這組數(shù)據(jù)的中位數(shù);若這組數(shù)據(jù)的個數(shù)是偶數(shù),則最中間兩個數(shù)的平均數(shù)是這組數(shù)據(jù)的中位數(shù).3、D【解析】

先化簡,然后再根據(jù)平方根的定義求解即可.【詳解】∵=2,2的平方根是±,∴的平方根是±.故選D.【點睛】本題考查了平方根的定義以及算術(shù)平方根,先把正確化簡是解題的關(guān)鍵,本題比較容易出錯.4、D【解析】分析:根據(jù)圖示,可得:c<b<0<a,,據(jù)此逐項判定即可.詳解:∵c<0<a,|c|>|a|,∴a+c<0,∴選項A不符合題意;∵c<b<0,∴b+c<0,∴選項B不符合題意;∵c<b<0<a,c<0,∴ac<0,bc>0,∴ac<bc,∴選項C不符合題意;∵a>b,∴a﹣c>b﹣c,∴選項D符合題意.故選D.點睛:此題考查了數(shù)軸,考查了有理數(shù)的大小比較關(guān)系,考查了不等關(guān)系與不等式.熟記有理數(shù)大小比較法則,即正數(shù)大于0,負數(shù)小于0,正數(shù)大于一切負數(shù).5、C【解析】

分別根據(jù)同底數(shù)冪相乘、同底數(shù)冪相除、冪的乘方的運算法則逐一計算可得.【詳解】A、a2?a3=a5,此選項不符合題意;

B、a12÷a2=a10,此選項不符合題意;

C、(a2)3=a6,此選項符合題意;

D、(-a2)3=-a6,此選項不符合題意;

故選C.【點睛】本題主要考查冪的運算,解題的關(guān)鍵是掌握同底數(shù)冪相乘、同底數(shù)冪相除、冪的乘方的運算法則.6、B【解析】

方向角是從正北或正南方向到目標方向所形成的小于90°的角,根據(jù)平行線的性質(zhì)求得∠ACF與∠BCF的度數(shù),∠ACF與∠BCF的和即為∠C的度數(shù).【詳解】解:由題意作圖如下∠DAC=46°,∠CBE=63°,由平行線的性質(zhì)可得∠ACF=∠DAC=46°,∠BCF=∠CBE=63°,∴∠ACB=∠ACF+∠BCF=46°+63°=109°,故選B.【點睛】本題考查了方位角和平行線的性質(zhì),熟練掌握方位角的概念和平行線的性質(zhì)是解題的關(guān)鍵.7、C【解析】

根據(jù)外接圓的性質(zhì),圓的對稱性,三角形的內(nèi)心以及圓周角定理即可解出.【詳解】(1)一個三角形只有一個外接圓,正確;(2)圓既是軸對稱圖形,又是中心對稱圖形,正確;(3)在同圓中,相等的圓心角所對的弧相等,正確;(4)三角形的內(nèi)心是三個內(nèi)角平分線的交點,到三邊的距離相等,錯誤;故選:C.【點睛】此題考查了外接圓的性質(zhì),三角形的內(nèi)心及軸對稱和中心對稱的概念,要求學生對這些概念熟練掌握.8、C【解析】試題分析:已知m∥n,根據(jù)平行線的性質(zhì)可得∠3=∠1=70°.又因∠3是△ABD的一個外角,可得∠3=∠2+∠A.即∠A=∠3-∠2=70°-30°=40°.故答案選C.考點:平行線的性質(zhì).9、A【解析】設(shè)(1)如果存在兩個實數(shù)p≠q,使得ap2+bp+c=aq2+bq+c,則說明在中,當x=p和x=q時的y值相等,但并不能說明此時p、q是與x軸交點的橫坐標,故①中結(jié)論不一定成立;(2)若am2+bm+c=an2+bn+c=as2+bs+c,則說明在中當x=m、n、s時,對應(yīng)的y值相等,因此m、n、s中至少有兩個數(shù)是相等的,故②錯誤;(3)如果ac<0,則b2-4ac>0,則的圖象和x軸必有兩個不同的交點,所以此時一定存在兩個實數(shù)m<n,使am2+bm+c<0<an2+bn+c,故③在結(jié)論正確;(4)如果ac>0,則b2-4ac的值的正負無法確定,此時的圖象與x軸的交點情況無法確定,所以④中結(jié)論不一定成立.綜上所述,四種說法中正確的是③.故選A.10、B【解析】試題解析:x2-8x+15=0,分解因式得:(x-3)(x-5)=0,可得x-3=0或x-5=0,解得:x1=3,x2=5,若3為底邊,5為腰時,三邊長分別為3,5,5,周長為3+5+5=1;若3為腰,5為底邊時,三邊長分別為3,3,5,周長為3+3+5=11,綜上,△ABC的周長為11或1.故選B.考點:1.解一元二次方程-因式分解法;2.三角形三邊關(guān)系;3.等腰三角形的性質(zhì).二、填空題(本大題共6個小題,每小題3分,共18分)11、1.【解析】試題分析:根據(jù)分式的值為0的條件列出關(guān)于a的不等式組,求出a的值即可.試題解析:∵分式a2∴a2解得a=1.考點:分式的值為零的條件.12、【解析】

無理數(shù)包括三方面的數(shù):①含π的,②一些開方開不盡的根式,③一些有規(guī)律的數(shù),根據(jù)以上內(nèi)容判斷即可.【詳解】解:=4,是有理數(shù),﹣3、、0都是有理數(shù),是無理數(shù).故答案為:.【點睛】本題考查了對無理數(shù)的定義的理解和運用,注意:無理數(shù)是指無限不循環(huán)小數(shù),包括三方面的數(shù):①含π的,②一些開方開不盡的根式,③一些有規(guī)律的數(shù).13、或【解析】

設(shè)直線y=2x-1與x軸交點為C,與y軸交點為A,過點A作AD⊥直線y=2x-b于點D,根據(jù)直線的解析式找出點A、B、C的坐標,通過同角的余角相等可得出∠BAD=∠ACO,再利用∠ACO的余弦值即可求出直線AB的長度,從而得出關(guān)于b的含絕對值符號的方程,解方程即可得出結(jié)論.【詳解】解:設(shè)直線y=2x-1與x軸交點為C,與y軸交點為A,過點A作AD⊥直線y=2x-b于點D,如圖所示.

∵直線y=2x-1與x軸交點為C,與y軸交點為A,

∴點A(0,-1),點C(,0),

∴OA=1,OC=,AC==,

∴cos∠ACO==.

∵∠BAD與∠CAO互余,∠ACO與∠CAO互余,

∴∠BAD=∠ACO.

∵AD=3,cos∠BAD==,

∴AB=3.

∵直線y=2x-b與y軸的交點為B(0,-b),

∴AB=|-b-(-1)|=3,

解得:b=1-3或b=1+3.

故答案為1+3或1-3.【點睛】本題考查兩條直線相交與平行的問題,利用平行線間的距離轉(zhuǎn)化成點到直線的距離得出關(guān)于b的方程是解題關(guān)鍵.14、且.【解析】

方程兩邊同乘以x-1,化為整數(shù)方程,求得x,再列不等式得出m的取值范圍.【詳解】方程兩邊同乘以x-1,得,m-1=x-1,解得x=m-2,∵分式方程的解為正數(shù),∴x=m-2>0且x-1≠0,即m-2>0且m-2-1≠0,∴m>2且m≠1,故答案為m>2且m≠1.15、【解析】

點O到點O′所經(jīng)過的路徑長分三段,先以A為圓心,1為半徑,圓心角為90度的弧長,再平移了AB弧的長,最后以B為圓心,1為半徑,圓心角為90度的弧長.根據(jù)弧長公式計算即可.【詳解】解:∵扇形OAB的圓心角為30°,半徑為1,∴AB弧長=∴點O到點O′所經(jīng)過的路徑長=故答案為:【點睛】本題考查了弧長公式:.也考查了旋轉(zhuǎn)的性質(zhì)和圓的性質(zhì).16、1【解析】

先根據(jù)平均數(shù)求出x,再根據(jù)極差定義可得答案.【詳解】由題意知=9,解得:x=8,∴這列數(shù)據(jù)的極差是10-8=1,故答案為1.【點睛】本題主要考查平均數(shù)和極差,熟練掌握平均數(shù)的計算得出x的值是解題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)y=﹣x+1;(2)﹣1<x<2;(3)3;【解析】

(1)根據(jù)待定系數(shù)法求一次函數(shù)和二次函數(shù)的解析式即可.(2)根據(jù)圖象以及點A,B兩點的坐標即可求出使二次函數(shù)的值大于一次函數(shù)的值的x的取值范圍;(3)連接AC、BC,設(shè)直線AB交y軸于點D,根據(jù)即可求出△ABC的面積.【詳解】(1)把A(﹣1,2)代入y=﹣x2+c得:﹣1+c=2,解得:c=3,∴y=﹣x2+3,把B(2,n)代入y=﹣x2+3得:n=﹣1,∴B(2,﹣1),把A(﹣1,2)、B(2,﹣1)分別代入y=kx+b得解得:∴y=﹣x+1;(2)根據(jù)圖象得:使二次函數(shù)的值大于一次函數(shù)的值的x的取值范圍是﹣1<x<2;(3)連接AC、BC,設(shè)直線AB交y軸于點D,把x=0代入y=﹣x2+3得:y=3,∴C(0,3),把x=0代入y=﹣x+1得:y=1,∴D(0,1),∴CD=3﹣1=2,則【點睛】考查待定系數(shù)法求二次函數(shù)解析式,三角形的面積公式等,掌握待定系數(shù)法是解題的關(guān)鍵.18、【解析】解:由①得③把③代入②得把代人③得∴原方程組的解為19、(1)證明見解析;(2)證明見解析;(1)①BC=4;②【解析】分析:(1)由菱形知∠D=∠BEC,由∠A+∠D=∠BEC+∠AEC=180°可得∠A=∠AEC,據(jù)此得證;(2)以點C為圓心,CE長為半徑作⊙C,與BC交于點F,于BC延長線交于點G,則CF=CG=AC=CE=CD,證△BEF∽△BGA得,即BF?BG=BE?AB,將BF=BC-CF=BC-AC、BG=BC+CG=BC+AC代入可得;(1)①設(shè)AB=5k、AC=1k,由BC2-AC2=AB?AC知BC=2k,連接ED交BC于點M,Rt△DMC中由DC=AC=1k、MC=BC=k求得DM==k,可知OM=OD-DM=1-k,在Rt△COM中,由OM2+MC2=OC2可得答案.②設(shè)OM=d,則MD=1-d,MC2=OC2-OM2=9-d2,繼而知BC2=(2MC)2=16-4d2、AC2=DC2=DM2+CM2=(1-d)2+9-d2,由(2)得AB?AC=BC2-AC2,據(jù)此得出關(guān)于d的二次函數(shù),利用二次函數(shù)的性質(zhì)可得答案.詳解:(1)∵四邊形EBDC為菱形,∴∠D=∠BEC,∵四邊形ABDC是圓的內(nèi)接四邊形,∴∠A+∠D=180°,又∠BEC+∠AEC=180°,∴∠A=∠AEC,∴AC=CE;(2)以點C為圓心,CE長為半徑作⊙C,與BC交于點F,于BC延長線交于點G,則CF=CG,由(1)知AC=CE=CD,∴CF=CG=AC,∵四邊形AEFG是⊙C的內(nèi)接四邊形,∴∠G+∠AEF=180°,又∵∠AEF+∠BEF=180°,∴∠G=∠BEF,∵∠EBF=∠GBA,∴△BEF∽△BGA,∴,即BF?BG=BE?AB,∵BF=BC﹣CF=BC﹣AC、BG=BC+CG=BC+AC,BE=CE=AC,∴(BC﹣AC)(BC+AC)=AB?AC,即BC2﹣AC2=AB?AC;(1)設(shè)AB=5k、AC=1k,∵BC2﹣AC2=AB?AC,∴BC=2k,連接ED交BC于點M,∵四邊形BDCE是菱形,∴DE垂直平分BC,則點E、O、M、D共線,在Rt△DMC中,DC=AC=1k,MC=BC=k,∴DM=,∴OM=OD﹣DM=1﹣k,在Rt△COM中,由OM2+MC2=OC2得(1﹣k)2+(k)2=12,解得:k=或k=0(舍),∴BC=2k=4;②設(shè)OM=d,則MD=1﹣d,MC2=OC2﹣OM2=9﹣d2,∴BC2=(2MC)2=16﹣4d2,AC2=DC2=DM2+CM2=(1﹣d)2+9﹣d2,由(2)得AB?AC=BC2﹣AC2=﹣4d2+6d+18=﹣4(d﹣)2+,∴當d=,即OM=時,AB?AC最大,最大值為,∴DC2=,∴AC=DC=,∴AB=,此時.點睛:本題主要考查圓的綜合問題,解題的關(guān)鍵是掌握圓的有關(guān)性質(zhì)、圓內(nèi)接四邊形的性質(zhì)及菱形的性質(zhì)、相似三角形的判定與性質(zhì)、二次函數(shù)的性質(zhì)等知識點.20、見解析【解析】試題分析:(1),,可得∽,從而得,再根據(jù)∠BDF=∠CDA即可證;(2)由∽,可得,從而可得,再由∽,可得從而得,繼而可得,得到.試題解析:(1)∵,∴,∵,∴∽,∴,又∵∠ADB=∠CDE,∴∠ADB+∠ADF=∠CDE+∠ADF,即∠BDF=∠CDA,∴∽;(2)∵∽,∴,∵,∴,∵∽,∴,∴,∴,∴.【點睛】本題考查了相似三角形的性質(zhì)與判定,能結(jié)合圖形以及已知條件靈活選擇恰當?shù)姆椒ㄟM行證明是關(guān)鍵.21、(I)(10,4)或(6,4)(II)C′(6,2)(III)①C′(8,4)②C′(,﹣)【解析】

(I)如圖①,當OB∥AC′,四邊形OBC′A是平行四邊形,只要證明B、C′、D′共線即可解決問題,再根據(jù)對稱性確定D″的坐標;(II)如圖②,當α=60°時,作C′K⊥AC于K.解直角三角形求出OK,C′K即可解決問題;(III)分兩種情形分別求解即可解決問題;【詳解】解:(I)如圖①,∵A(8,0),B(0,4),∴OB=4,OA=8,∵AC=OC=AC′=4,∴當OB∥AC′,四邊形OBC′A是平行四邊形,∵∠AOB=90°,∴四邊形OBC′A是矩形,∴∠AC′B=90°,∵∠AC′D′=90°,∴B、C′、D′共線,∴BD′∥OA,∵AC=CO,BD=AD,∴CD=C′D′=OB=2,∴D′(10,4),根據(jù)對稱性可知,點D″在線段BC′上時,D″(6,4)也滿足條件.綜上所述,滿足條件的點D坐標(10,4)或(6,4).(II)如圖②,當α=60°時,作C′K⊥AC于K.在Rt△AC′K中,∵∠KAC′=60°,AC′=4,∴AK=2,C′K=2,∴OK=6,∴C′(6,2).(III)①如圖③中,當B、C′、D′共線時,由(Ⅰ)可知,C′(8,4).②如圖④中,當B、C′、D′共線時,BD′交OA于F,易證△BOF≌△AC′F,∴OF=FC′,設(shè)OF=FC′=x,在Rt△ABC′中,BC′==8,在RT△BOF中,OB=4,OF=x,BF=8﹣x,∴(8﹣x)2=42+x2,解得x=3,∴OF=FC′=3,BF=5,作C′K⊥OA于K,∵OB∥KC′,∴==,∴==,∴KC′=,KF=,∴OK=,∴C′(,﹣).【點睛】本題考查三角形綜合題、旋轉(zhuǎn)變換、矩形的判定和性質(zhì)、平行線的性質(zhì)、勾股定理等知識,解題的關(guān)鍵是

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論