四川省旺蒼縣兩鄉(xiāng)鎮(zhèn)初級中學(xué)2022年中考數(shù)學(xué)五模試卷含解析_第1頁
四川省旺蒼縣兩鄉(xiāng)鎮(zhèn)初級中學(xué)2022年中考數(shù)學(xué)五模試卷含解析_第2頁
四川省旺蒼縣兩鄉(xiāng)鎮(zhèn)初級中學(xué)2022年中考數(shù)學(xué)五模試卷含解析_第3頁
四川省旺蒼縣兩鄉(xiāng)鎮(zhèn)初級中學(xué)2022年中考數(shù)學(xué)五模試卷含解析_第4頁
四川省旺蒼縣兩鄉(xiāng)鎮(zhèn)初級中學(xué)2022年中考數(shù)學(xué)五模試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

四川省旺蒼縣兩鄉(xiāng)鎮(zhèn)初級中學(xué)2022年中考數(shù)學(xué)五模試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.在平面直角坐標(biāo)系中,二次函數(shù)y=a(x–h)2+k(a<0)的圖象可能是A. B.C. D.2.若實數(shù)m滿足,則下列對m值的估計正確的是()A.﹣2<m<﹣1 B.﹣1<m<0 C.0<m<1 D.1<m<23.如圖,在△ABC中,DE∥BC,∠ADE=∠EFC,AD∶BD=5∶3,CF=6,則DE的長為()A.6 B.8 C.10 D.124.一列動車從A地開往B地,一列普通列車從B地開往A地,兩車同時出發(fā),設(shè)普通列車行駛的時間為x(小時),兩車之間的距離為y(千米),如圖中的折線表示y與x之間的函數(shù)關(guān)系.下列敘述錯誤的是()A.AB兩地相距1000千米B.兩車出發(fā)后3小時相遇C.動車的速度為D.普通列車行駛t小時后,動車到達(dá)終點B地,此時普通列車還需行駛千米到達(dá)A地5.在△ABC中,AB=AC=13,BC=24,則tanB等于()A. B. C. D.6.函數(shù)y=中,自變量x的取值范圍是()A.x>3 B.x<3 C.x=3 D.x≠37.給出下列各數(shù)式,①②③④計算結(jié)果為負(fù)數(shù)的有()A.1個 B.2個 C.3個 D.4個8.在方格紙中,選擇標(biāo)有序號①②③④中的一個小正方形涂黑,與圖中陰影部分構(gòu)成中心對稱圖形.該小正方形的序號是()A.① B.② C.③ D.④9.圖為小明和小紅兩人的解題過程.下列敘述正確的是()計算:+A.只有小明的正確 B.只有小紅的正確C.小明、小紅都正確 D.小明、小紅都不正確10.如圖,為等邊三角形,要在外部取一點,使得和全等,下面是兩名同學(xué)做法:()甲:①作的角平分線;②以為圓心,長為半徑畫弧,交于點,點即為所求;乙:①過點作平行于的直線;②過點作平行于的直線,交于點,點即為所求.A.兩人都正確 B.兩人都錯誤 C.甲正確,乙錯誤 D.甲錯誤,乙正確二、填空題(共7小題,每小題3分,滿分21分)11.如圖,點E在正方形ABCD的邊CD上.若△ABE的面積為8,CE=3,則線段BE的長為_______.12.函數(shù)y=1x-1的自變量x的取值范圍是13.如圖,在矩形ABCD中,AB=2,AD=6,E.F分別是線段AD,BC上的點,連接EF,使四邊形ABFE為正方形,若點G是AD上的動點,連接FG,將矩形沿FG折疊使得點C落在正方形ABFE的對角線所在的直線上,對應(yīng)點為P,則線段AP的長為______.14.如圖,用黑白兩種顏色的紙片,按黑色紙片數(shù)逐漸增加1的規(guī)律拼成如圖圖案,則第4個圖案中有__________白色紙片,第n個圖案中有__________張白色紙片.15.如圖,⊙O的半徑OD⊥弦AB于點C,連結(jié)AO并延長交⊙O于點E,連結(jié)EC.若AB=8,CD=2,則EC的長為_______.16.如圖,是用三角形擺成的圖案,擺第一層圖需要1個三角形,擺第二層圖需要3個三角形,擺第三層圖需要7個三角形,擺第四層圖需要13個三角形,擺第五層圖需要21個三角形,…,擺第n層圖需要_____個三角形.17.如圖,在△ABC中,∠C=∠ABC,BE⊥AC,垂足為點E,△BDE是等邊三角形,若AD=4,則線段BE的長為______.三、解答題(共7小題,滿分69分)18.(10分)拋物線經(jīng)過A(-1,0)、C(0,-3)兩點,與x軸交于另一點B.求此拋物線的解析式;已知點D在第四象限的拋物線上,求點D關(guān)于直線BC對稱的點D’的坐標(biāo);在(2)的條件下,連結(jié)BD,問在x軸上是否存在點P,使,若存在,請求出P點的坐標(biāo);若不存在,請說明理由.19.(5分)如圖,在平面直角坐標(biāo)系中,直線y=x+2與x軸,y軸分別交于A,B兩點,點C(2,m)為直線y=x+2上一點,直線y=﹣x+b過點C.求m和b的值;直線y=﹣x+b與x軸交于點D,動點P從點D開始以每秒1個單位的速度向x軸負(fù)方向運動.設(shè)點P的運動時間為t秒.①若點P在線段DA上,且△ACP的面積為10,求t的值;②是否存在t的值,使△ACP為等腰三角形?若存在,直接寫出t的值;若不存在,請說明理由.20.(8分)如圖是小朋友蕩秋千的側(cè)面示意圖,靜止時秋千位于鉛垂線BD上,轉(zhuǎn)軸B到地面的距離BD=3m.小亮在蕩秋千過程中,當(dāng)秋千擺動到最高點A時,測得點A到BD的距離AC=2m,點A到地面的距離AE=1.8m;當(dāng)他從A處擺動到A′處時,有A'B⊥AB.(1)求A′到BD的距離;(2)求A′到地面的距離.21.(10分)規(guī)定:不相交的兩個函數(shù)圖象在豎直方向上的最短距離為這兩個函數(shù)的“親近距離”(1)求拋物線y=x2﹣2x+3與x軸的“親近距離”;(2)在探究問題:求拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”的過程中,有人提出:過拋物線的頂點向x軸作垂線與直線相交,則該問題的“親近距離”一定是拋物線頂點與交點之間的距離,你同意他的看法嗎?請說明理由.(3)若拋物線y=x2﹣2x+3與拋物線y=+c的“親近距離”為,求c的值.22.(10分)綜合與實踐:概念理解:將△ABC繞點A按逆時針方向旋轉(zhuǎn),旋轉(zhuǎn)角記為θ(0°≤θ≤90°),并使各邊長變?yōu)樵瓉淼膎倍,得到△AB′C′,如圖,我們將這種變換記為[θ,n],:.問題解決:(2)如圖,在△ABC中,∠BAC=30°,∠ACB=90°,對△ABC作變換[θ,n]得到△AB′C′,使點B,C,C′在同一直線上,且四邊形ABB′C′為矩形,求θ和n的值.拓廣探索:(3)在△ABC中,∠BAC=45°,∠ACB=90°,對△ABC作變換得到△AB′C′,則四邊形ABB′C′為正方形23.(12分)分式化簡:(a-)÷24.(14分)計算:×(2﹣)﹣÷+.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

根據(jù)題目給出的二次函數(shù)的表達(dá)式,可知二次函數(shù)的開口向下,即可得出答案.【詳解】二次函數(shù)y=a(x﹣h)2+k(a<0)二次函數(shù)開口向下.即B成立.故答案選:B.【點睛】本題考查的是簡單運用二次函數(shù)性質(zhì),解題的關(guān)鍵是熟練掌握二次函數(shù)性質(zhì).2、A【解析】試題解析:∵,∴m2+2+=0,∴m2+2=-,∴方程的解可以看作是函數(shù)y=m2+2與函數(shù)y=-,作函數(shù)圖象如圖,在第二象限,函數(shù)y=m2+2的y值隨m的增大而減小,函數(shù)y=-的y值隨m的增大而增大,當(dāng)m=-2時y=m2+2=4+2=6,y=-=-=2,∵6>2,∴交點橫坐標(biāo)大于-2,當(dāng)m=-1時,y=m2+2=1+2=3,y=-=-=4,∵3<4,∴交點橫坐標(biāo)小于-1,∴-2<m<-1.故選A.考點:1.二次函數(shù)的圖象;2.反比例函數(shù)的圖象.3、C【解析】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,又∵∠ADE=∠EFC,∴∠B=∠EFC,△ADE∽△EFC,∴BD∥EF,,∴四邊形BFED是平行四邊形,∴BD=EF,∴,解得:DE=10.故選C.4、C【解析】

可以用物理的思維來解決這道題.【詳解】未出發(fā)時,x=0,y=1000,所以兩地相距1000千米,所以A選項正確;y=0時兩車相遇,x=3,所以B選項正確;設(shè)動車速度為V1,普車速度為V2,則3(V1+V2)=1000,所以C選項錯誤;D選項正確.【點睛】理解轉(zhuǎn)折點的含義是解決這一類題的關(guān)鍵.5、B【解析】如圖,等腰△ABC中,AB=AC=13,BC=24,過A作AD⊥BC于D,則BD=12,在Rt△ABD中,AB=13,BD=12,則,AD=,故tanB=.故選B.【點睛】考查的是銳角三角函數(shù)的定義、等腰三角形的性質(zhì)及勾股定理.6、D【解析】由題意得,x﹣1≠0,解得x≠1.故選D.7、B【解析】∵①;②;③;④;∴上述各式中計算結(jié)果為負(fù)數(shù)的有2個.故選B.8、B【解析】根據(jù)中心對稱圖形的概念,中心對稱圖形是圖形沿對稱中心旋轉(zhuǎn)180度后與原圖重合。因此,通過觀察發(fā)現(xiàn),當(dāng)涂黑②時,所形成的圖形關(guān)于點A中心對稱。故選B。9、D【解析】

直接利用分式的加減運算法則計算得出答案.【詳解】解:=﹣+=﹣+==,故小明、小紅都不正確.故選:D.【點睛】此題主要考查了分式的加減運算,正確進(jìn)行通分運算是解題關(guān)鍵.10、A【解析】

根據(jù)題意先畫出相應(yīng)的圖形,然后進(jìn)行推理論證即可得出結(jié)論.【詳解】甲的作法如圖一:∵為等邊三角形,AD是的角平分線∴由甲的作法可知,在和中,故甲的作法正確;乙的作法如圖二:在和中,故乙的作法正確;故選:A.【點睛】本題主要借助尺規(guī)作圖考查全等三角形的判定,掌握全等三角形的判定方法是解題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、5.【解析】

試題解析:過E作EM⊥AB于M,∵四邊形ABCD是正方形,∴AD=BC=CD=AB,∴EM=AD,BM=CE,∵△ABE的面積為8,∴×AB×EM=8,解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:BE==5.考點:1.正方形的性質(zhì);2.三角形的面積;3.勾股定理.12、x>1【解析】依題意可得x-1>0,解得x>1,所以函數(shù)的自變量x的取值范圍是x>113、1或1﹣2【解析】

當(dāng)點P在AF上時,由翻折的性質(zhì)可求得PF=FC=1,然后再求得正方形的對角線AF的長,從而可得到PA的長;當(dāng)點P在BE上時,由正方形的性質(zhì)可知BP為AF的垂直平分線,則AP=PF,由翻折的性質(zhì)可求得PF=FC=1,故此可得到AP的值.【詳解】解:如圖1所示:由翻折的性質(zhì)可知PF=CF=1,∵ABFE為正方形,邊長為2,∴AF=2.∴PA=1﹣2.如圖2所示:由翻折的性質(zhì)可知PF=FC=1.∵ABFE為正方形,∴BE為AF的垂直平分線.∴AP=PF=1.故答案為:1或1﹣2.【點睛】本題主要考查的是翻折的性質(zhì)、正方形的性質(zhì)的應(yīng)用,根據(jù)題意畫出符合題意的圖形是解題的關(guān)鍵.14、133n+1【解析】分析:觀察圖形發(fā)現(xiàn):白色紙片在4的基礎(chǔ)上,依次多3個;根據(jù)其中的規(guī)律得出第n個圖案中有白色紙片即可.詳解:∵第1個圖案中有白色紙片3×1+1=4張第2個圖案中有白色紙片3×2+1=7張,第3圖案中有白色紙片3×3+1=10張,∴第4個圖案中有白色紙片3×4+1=13張第n個圖案中有白色紙片3n+1張,故答案為:13、3n+1.點睛:考查學(xué)生的探究能力,解題時必須仔細(xì)觀察規(guī)律,通過歸納得出結(jié)論.15、【解析】

設(shè)⊙O半徑為r,根據(jù)勾股定理列方程求出半徑r,由勾股定理依次求BE和EC的長.【詳解】連接BE,設(shè)⊙O半徑為r,則OA=OD=r,OC=r-2,

∵OD⊥AB,

∴∠ACO=90°,

AC=BC=AB=4,

在Rt△ACO中,由勾股定理得:r2=42+(r-2)2,

r=5,

∴AE=2r=10,

∵AE為⊙O的直徑,

∴∠ABE=90°,

由勾股定理得:BE=6,

在Rt△ECB中,EC=.故答案是:.【點睛】考查的是垂徑定理及勾股定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形,利用勾股定理求解是解答此題的關(guān)鍵.16、n2﹣n+1【解析】

觀察可得,第1層三角形的個數(shù)為1,第2層三角形的個數(shù)為3,比第1層多2個;第3層三角形的個數(shù)為7,比第2層多4個;…可得,每一層比上一層多的個數(shù)依次為2,4,6,…據(jù)此作答.【詳解】觀察可得,第1層三角形的個數(shù)為1,第2層三角形的個數(shù)為22?2+1=3,第3層三角形的個數(shù)為32?3+1=7,第四層圖需要42?4+1=13個三角形擺第五層圖需要52?5+1=21.那么擺第n層圖需要n2?n+1個三角形。故答案為:n2?n+1.【點睛】本題考查了規(guī)律型:圖形的變化類,解題的關(guān)鍵是由圖形得到一般規(guī)律.17、1【解析】

本題首先由等邊三角形的性質(zhì)及垂直定義得到∠DBE=60°,∠BEC=90°,再根據(jù)等腰三角形的性質(zhì)可以得出∠EBC=∠ABC-60°=∠C-60°,最后根據(jù)三角形內(nèi)角和定理得出關(guān)系式∠C-60°+∠C=90°解出∠C,推出AD=DE,于是得到結(jié)論.【詳解】∵△BDE是正三角形,∴∠DBE=60°;∵在△ABC中,∠C=∠ABC,BE⊥AC,∴∠C=∠ABC=∠ABE+∠EBC,則∠EBC=∠ABC-60°=∠C-60°,∠BEC=90°;∴∠EBC+∠C=90°,即∠C-60°+∠C=90°,解得∠C=75°,∴∠ABC=75°,∴∠A=30°,∵∠AED=90°-∠DEB=30°,∴∠A=∠AED,∴DE=AD=1,∴BE=DE=1,故答案為:1.【點睛】本題主要考查等腰三角形的性質(zhì)及等邊三角形的性質(zhì)及垂直定義,解題的關(guān)鍵是根據(jù)三角形內(nèi)角和定理列出符合題意的簡易方程,從而求出結(jié)果.三、解答題(共7小題,滿分69分)18、(1)(2)(0,-1)(3)(1,0)(9,0)【解析】

(1)將A(?1,0)、C(0,?3)兩點坐標(biāo)代入拋物線y=ax2+bx?3a中,列方程組求a、b的值即可;(2)將點D(m,?m?1)代入(1)中的拋物線解析式,求m的值,再根據(jù)對稱性求點D關(guān)于直線BC對稱的點D'的坐標(biāo);(3)分兩種情形①過點C作CP∥BD,交x軸于P,則∠PCB=∠CBD,②連接BD′,過點C作CP′∥BD′,交x軸于P′,分別求出直線CP和直線CP′的解析式即可解決問題.【詳解】解:(1)將A(?1,0)、C(0,?3)代入拋物線y=ax2+bx?3a中,得,解得∴y=x2?2x?3;(2)將點D(m,?m?1)代入y=x2?2x?3中,得m2?2m?3=?m?1,解得m=2或?1,∵點D(m,?m?1)在第四象限,∴D(2,?3),∵直線BC解析式為y=x?3,∴∠BCD=∠BCO=45°,CD′=CD=2,OD′=3?2=1,∴點D關(guān)于直線BC對稱的點D'(0,?1);(3)存在.滿足條件的點P有兩個.①過點C作CP∥BD,交x軸于P,則∠PCB=∠CBD,∵直線BD解析式為y=3x?9,∵直線CP過點C,∴直線CP的解析式為y=3x?3,∴點P坐標(biāo)(1,0),②連接BD′,過點C作CP′∥BD′,交x軸于P′,∴∠P′CB=∠D′BC,根據(jù)對稱性可知∠D′BC=∠CBD,∴∠P′CB=∠CBD,∵直線BD′的解析式為∵直線CP′過點C,∴直線CP′解析式為,∴P′坐標(biāo)為(9,0),綜上所述,滿足條件的點P坐標(biāo)為(1,0)或(9,0).【點睛】本題考查了二次函數(shù)的綜合運用.關(guān)鍵是由已知條件求拋物線解析式,根據(jù)拋物線的對稱性,直線BC的特殊性求點的坐標(biāo),學(xué)會分類討論,不能漏解.19、(1)4,5;(2)①7;②4或或或8.【解析】

分別令可得b和m的值;根據(jù)的面積公式列等式可得t的值;存在,分三種情況:當(dāng)時,如圖1,當(dāng)時,如圖2,當(dāng)時,如圖3,分別求t的值即可.【詳解】把點代入直線中得:,點,直線過點C,,;由題意得:,中,當(dāng)時,,,,中,當(dāng)時,,,,,的面積為10,,,則t的值7秒;存在,分三種情況:當(dāng)時,如圖1,過C作于E,,,即;當(dāng)時,如圖2,,,;當(dāng)時,如圖3,,,,,,,即;綜上,當(dāng)秒或秒或秒或8秒時,為等腰三角形.【點睛】本題屬于一次函數(shù)綜合題,涉及的知識有:待定系數(shù)法求一次函數(shù)解析式,坐標(biāo)與圖形性質(zhì),勾股定理,等腰三角形的判定,以及一次函數(shù)與坐標(biāo)軸的交點,熟練掌握性質(zhì)及定理是解本題的關(guān)鍵,并注意運用分類討論的思想解決問題.20、(1)A'到BD的距離是1.2m;(2)A'到地面的距離是1m.【解析】

(1)如圖2,作A'F⊥BD,垂足為F.根據(jù)同角的余角相等證得∠2=∠3;再利用AAS證明△ACB≌△BFA',根據(jù)全等三角形的性質(zhì)即可得A'F=BC,根據(jù)BC=BD﹣CD求得BC的長,即可得A'F的長,從而求得A'到BD的距離;(2)作A'H⊥DE,垂足為H,可證得A'H=FD,根據(jù)A'H=BD﹣BF求得A'H的長,從而求得A'到地面的距離.【詳解】(1)如圖2,作A'F⊥BD,垂足為F.∵AC⊥BD,∴∠ACB=∠A'FB=90°;在Rt△A'FB中,∠1+∠3=90°;又∵A'B⊥AB,∴∠1+∠2=90°,∴∠2=∠3;在△ACB和△BFA'中,,∴△ACB≌△BFA'(AAS);∴A'F=BC,∵AC∥DE且CD⊥AC,AE⊥DE,∴CD=AE=1.8;∴BC=BD﹣CD=3﹣1.8=1.2,∴A'F=1.2,即A'到BD的距離是1.2m.(2)由(1)知:△ACB≌△BFA',∴BF=AC=2m,作A'H⊥DE,垂足為H.∵A'F∥DE,∴A'H=FD,∴A'H=BD﹣BF=3﹣2=1,即A'到地面的距離是1m.【點睛】本題考查了全等三角形的判定與性質(zhì)的應(yīng)用,作出輔助線,證明△ACB≌△BFA'是解決問題的關(guān)鍵.21、(1)2;(2)不同意他的看法,理由詳見解析;(3)c=1.【解析】

(1)把y=x2﹣2x+3配成頂點式得到拋物線上的點到x軸的最短距離,然后根據(jù)題意解決問題;(2)如圖,P點為拋物線y=x2﹣2x+3任意一點,作PQ∥y軸交直線y=x﹣1于Q,設(shè)P(t,t2﹣2t+3),則Q(t,t﹣1),則PQ=t2﹣2t+3﹣(t﹣1),然后利用二次函數(shù)的性質(zhì)得到拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”,然后對他的看法進(jìn)行判斷;(3)M點為拋物線y=x2﹣2x+3任意一點,作MN∥y軸交拋物線于N,設(shè)M(t,t2﹣2t+3),則N(t,t2+c),與(2)方法一樣得到MN的最小值為﹣c,從而得到拋物線y=x2﹣2x+3與拋物線的“親近距離”,所以,然后解方程即可.【詳解】(1)∵y=x2﹣2x+3=(x﹣1)2+2,∴拋物線上的點到x軸的最短距離為2,∴拋物線y=x2﹣2x+3與x軸的“親近距離”為:2;(2)不同意他的看法.理由如下:如圖,P點為拋物線y=x2﹣2x+3任意一點,作PQ∥y軸交直線y=x﹣1于Q,設(shè)P

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論