河北省邯鄲市館陶縣2024年十校聯(lián)考最后數(shù)學(xué)試題含解析_第1頁
河北省邯鄲市館陶縣2024年十校聯(lián)考最后數(shù)學(xué)試題含解析_第2頁
河北省邯鄲市館陶縣2024年十校聯(lián)考最后數(shù)學(xué)試題含解析_第3頁
河北省邯鄲市館陶縣2024年十校聯(lián)考最后數(shù)學(xué)試題含解析_第4頁
河北省邯鄲市館陶縣2024年十校聯(lián)考最后數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩22頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

河北省邯鄲市館陶縣2024年十校聯(lián)考最后數(shù)學(xué)試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,已知l1∥l2,∠A=40°,∠1=60°,則∠2的度數(shù)為()A.40° B.60° C.80° D.100°2.下列運(yùn)算正確的是()A.a(chǎn)3?a2=a6 B.a(chǎn)﹣2=﹣ C.3﹣2= D.(a+2)(a﹣2)=a2+43.某校120名學(xué)生某一周用于閱讀課外書籍的時間的頻率分布直方圖如圖所示.其中閱讀時間是8~10小時的頻數(shù)和頻率分別是()A.15,0.125 B.15,0.25 C.30,0.125 D.30,0.254.甲、乙兩人沿相同的路線由A地到B地勻速前進(jìn),A、B兩地間的路程為20km.他們前進(jìn)的路程為s(km),甲出發(fā)后的時間為t(h),甲、乙前進(jìn)的路程與時間的函數(shù)圖象如圖所示.根據(jù)圖象信息,下列說法正確的是()A.甲的速度是4km/h B.乙的速度是10km/hC.乙比甲晚出發(fā)1h D.甲比乙晚到B地3h5.如圖,E,B,F(xiàn),C四點在一條直線上,EB=CF,∠A=∠D,再添一個條件仍不能證明△ABC≌△DEF的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE6.如果一組數(shù)據(jù)6,7,x,9,5的平均數(shù)是2x,那么這組數(shù)據(jù)的中位數(shù)為()A.5 B.6 C.7 D.97.下列各運(yùn)算中,計算正確的是()A.a(chǎn)12÷a3=a4 B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2 D.2a?3a=6a28.如圖,⊙O是等邊△ABC的外接圓,其半徑為3,圖中陰影部分的面積是()A.π B. C.2π D.3π9.方程的解是()A. B. C. D.10.已知圓錐的側(cè)面積為10πcm2,側(cè)面展開圖的圓心角為36°,則該圓錐的母線長為()A.100cm B.cm C.10cm D.cm11.如圖,已知AB∥CD,DE⊥AC,垂足為E,∠A=120°,則∠D的度數(shù)為()A.30° B.60° C.50° D.40°12.如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半徑為2,圓心角為60°,則圖中陰影部分的面積是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.在Rt△ABC中,∠ACB=90°,AC=8,BC=6,點D是以點A為圓心4為半徑的圓上一點,連接BD,點M為BD中點,線段CM長度的最大值為_____.14.若分式a2-9a+315.一個扇形的弧長是,它的面積是,這個扇形的圓心角度數(shù)是_____.16.如圖,把一塊直角三角板的直角頂點放在直尺的一邊上,若∠1=50°,則∠2=_____°.17.如圖1,在△ABC中,∠ACB=90°,BC=2,∠A=30°,點E,F(xiàn)分別是線段BC,AC的中點,連結(jié)EF.(1)線段BE與AF的位置關(guān)系是,=.(2)如圖2,當(dāng)△CEF繞點C順時針旋轉(zhuǎn)a時(0°<a<180°),連結(jié)AF,BE,(1)中的結(jié)論是否仍然成立.如果成立,請證明;如果不成立,請說明理由.(3)如圖3,當(dāng)△CEF繞點C順時針旋轉(zhuǎn)a時(0°<a<180°),延長FC交AB于點D,如果AD=6﹣2,求旋轉(zhuǎn)角a的度數(shù).18.如圖,已知⊙O1與⊙O2相交于A、B兩點,延長連心線O1O2交⊙O2于點P,聯(lián)結(jié)PA、PB,若∠APB=60°,AP=6,那么⊙O2的半徑等于________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)為營造“安全出行”的良好交通氛圍,實時監(jiān)控道路交迸,某市交管部門在路口安裝的高清攝像頭如圖所示,立桿MA與地面AB垂直,斜拉桿CD與AM交于點C,橫桿DE∥AB,攝像頭EF⊥DE于點E,AC=55米,CD=3米,EF=0.4米,∠CDE=162°.求∠MCD的度數(shù);求攝像頭下端點F到地面AB的距離.(精確到百分位)20.(6分)先化簡,再求值:,其中a是方程a2+a﹣6=0的解.21.(6分)如圖,已知拋物線的頂點為A(1,4),拋物線與y軸交于點B(0,3),與x軸交于C、D兩點.點P是x軸上的一個動點.求此拋物線的解析式;求C、D兩點坐標(biāo)及△BCD的面積;若點P在x軸上方的拋物線上,滿足S△PCD=S△BCD,求點P的坐標(biāo).22.(8分)先化簡,再求值:(﹣1)÷,其中x=1.23.(8分)關(guān)于x的一元二次方程有兩個實數(shù)根,則m的取值范圍是()A.m≤1 B.m<1 C.﹣3≤m≤1 D.﹣3<m<124.(10分)如圖,∠BAO=90°,AB=8,動點P在射線AO上,以PA為半徑的半圓P交射線AO于另一點C,CD∥BP交半圓P于另一點D,BE∥AO交射線PD于點E,EF⊥AO于點F,連接BD,設(shè)AP=m.(1)求證:∠BDP=90°.(2)若m=4,求BE的長.(3)在點P的整個運(yùn)動過程中.①當(dāng)AF=3CF時,求出所有符合條件的m的值.②當(dāng)tan∠DBE=時,直接寫出△CDP與△BDP面積比.25.(10分)如圖1,△ABC與△CDE都是等腰直角三角形,直角邊AC,CD在同一條直線上,點M、N分別是斜邊AB、DE的中點,點P為AD的中點,連接AE,BD,PM,PN,MN.(1)觀察猜想:圖1中,PM與PN的數(shù)量關(guān)系是,位置關(guān)系是.(2)探究證明:將圖1中的△CDE繞著點C順時針旋轉(zhuǎn)α(0°<α<90°),得到圖2,AE與MP、BD分別交于點G、H,判斷△PMN的形狀,并說明理由;(3)拓展延伸:把△CDE繞點C任意旋轉(zhuǎn),若AC=4,CD=2,請直接寫出△PMN面積的最大值.26.(12分)如圖,經(jīng)過點C(0,﹣4)的拋物線()與x軸相交于A(﹣2,0),B兩點.(1)a0,0(填“>”或“<”);(2)若該拋物線關(guān)于直線x=2對稱,求拋物線的函數(shù)表達(dá)式;(3)在(2)的條件下,連接AC,E是拋物線上一動點,過點E作AC的平行線交x軸于點F.是否存在這樣的點E,使得以A,C,E,F(xiàn)為頂點所組成的四邊形是平行四邊形?若存在,求出滿足條件的點E的坐標(biāo);若不存在,請說明理由.27.(12分)(1)計算:2﹣2﹣+(1﹣)0+2sin60°.(2)先化簡,再求值:()÷,其中x=﹣1.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】

根據(jù)兩直線平行,內(nèi)錯角相等可得∠3=∠1,再根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和列式計算即可得解.【詳解】解:∵l1∥l2,∴∠3=∠1=60°,∴∠2=∠A+∠3=40°+60°=100°.故選D.【點睛】本題考查了平行線的性質(zhì),三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì),熟記性質(zhì)并準(zhǔn)確識圖是解題的關(guān)鍵.2、C【解析】

直接利用同底數(shù)冪的乘除運(yùn)算法則、負(fù)指數(shù)冪的性質(zhì)、二次根式的加減運(yùn)算法則、平方差公式分別計算即可得出答案.【詳解】A、a3?a2=a5,故A選項錯誤;B、a﹣2=,故B選項錯誤;C、3﹣2=,故C選項正確;D、(a+2)(a﹣2)=a2﹣4,故D選項錯誤,故選C.【點睛】本題考查了同底數(shù)冪的乘除運(yùn)算以及負(fù)指數(shù)冪的性質(zhì)以及二次根式的加減運(yùn)算、平方差公式,正確掌握相關(guān)運(yùn)算法則是解題關(guān)鍵.3、D【解析】分析:根據(jù)頻率分布直方圖中的數(shù)據(jù)信息和被調(diào)查學(xué)生總數(shù)為120進(jìn)行計算即可作出判斷.詳解:由頻率分布直方圖可知:一周內(nèi)用于閱讀的時間在8-10小時這組的:頻率:組距=0.125,而組距為2,∴一周內(nèi)用于閱讀的時間在8-10小時這組的頻率=0.125×2=0.25,又∵被調(diào)查學(xué)生總數(shù)為120人,∴一周內(nèi)用于閱讀的時間在8-10小時這組的頻數(shù)=120×0.25=30.綜上所述,選項D中數(shù)據(jù)正確.故選D.點睛:本題解題的關(guān)鍵有兩點:(1)要看清,縱軸上的數(shù)據(jù)是“頻率:組距”的值,而不是頻率;(2)要弄清各自的頻數(shù)、頻率和總數(shù)之間的關(guān)系.4、C【解析】甲的速度是:20÷4=5km/h;乙的速度是:20÷1=20km/h;由圖象知,甲出發(fā)1小時后乙才出發(fā),乙到2小時后甲才到,故選C.5、A【解析】

由EB=CF,可得出EF=BC,又有∠A=∠D,本題具備了一組邊、一組角對應(yīng)相等,為了再添一個條件仍不能證明△ABC≌△DEF,那么添加的條件與原來的條件可形成SSA,就不能證明△ABC≌△DEF了.【詳解】∵EB=CF,∴EB+BF=CF+BF,即EF=BC,又∵∠A=∠D,A、添加DE=AB與原條件滿足SSA,不能證明△ABC≌△DEF,故A選項正確.B、添加DF∥AC,可得∠DFE=∠ACB,根據(jù)AAS能證明△ABC≌△DEF,故B選項錯誤.C、添加∠E=∠ABC,根據(jù)AAS能證明△ABC≌△DEF,故C選項錯誤.D、添加AB∥DE,可得∠E=∠ABC,根據(jù)AAS能證明△ABC≌△DEF,故D選項錯誤,故選A.【點睛】本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.6、B【解析】

直接利用平均數(shù)的求法進(jìn)而得出x的值,再利用中位數(shù)的定義求出答案.【詳解】∵一組數(shù)據(jù)1,7,x,9,5的平均數(shù)是2x,∴,解得:,則從大到小排列為:3,5,1,7,9,故這組數(shù)據(jù)的中位數(shù)為:1.故選B.【點睛】此題主要考查了中位數(shù)以及平均數(shù),正確得出x的值是解題關(guān)鍵.7、D【解析】【分析】根據(jù)同底數(shù)冪的除法、積的乘方、完全平方公式、單項式乘法的法則逐項計算即可得.【詳解】A、原式=a9,故A選項錯誤,不符合題意;B、原式=27a6,故B選項錯誤,不符合題意;C、原式=a2﹣2ab+b2,故C選項錯誤,不符合題意;D、原式=6a2,故D選項正確,符合題意,故選D.【點睛】本題考查了同底數(shù)冪的除法、積的乘方、完全平方公式、單項式乘法等運(yùn)算,熟練掌握各運(yùn)算的運(yùn)算法則是解本題的關(guān)鍵.8、D【解析】

根據(jù)等邊三角形的性質(zhì)得到∠A=60°,再利用圓周角定理得到∠BOC=120°,然后根據(jù)扇形的面積公式計算圖中陰影部分的面積即可.【詳解】∵△ABC為等邊三角形,∴∠A=60°,∴∠BOC=2∠A=120°,∴圖中陰影部分的面積==3π.故選D.【點睛】本題考查了三角形的外接圓與外心、圓周角定理及扇形的面積公式,求得∠BOC=120°是解決問題的關(guān)鍵.9、D【解析】

按照解分式方程的步驟進(jìn)行計算,注意結(jié)果要檢驗.【詳解】解:經(jīng)檢驗x=4是原方程的解故選:D【點睛】本題考查解分式方程,注意結(jié)果要檢驗.10、C【解析】

圓錐的側(cè)面展開圖是扇形,利用扇形的面積公式可求得圓錐的母線長.【詳解】設(shè)母線長為R,則圓錐的側(cè)面積==10π,∴R=10cm,故選C.【點睛】本題考查了圓錐的計算,熟練掌握扇形面積是解題的關(guān)鍵.11、A【解析】分析:根據(jù)平行線的性質(zhì)求出∠C,求出∠DEC的度數(shù),根據(jù)三角形內(nèi)角和定理求出∠D的度數(shù)即可.詳解:∵AB∥CD,∴∠A+∠C=180°.∵∠A=120°,∴∠C=60°.∵DE⊥AC,∴∠DEC=90°,∴∠D=180°﹣∠C﹣∠DEC=30°.故選A.點睛:本題考查了平行線的性質(zhì)和三角形內(nèi)角和定理的應(yīng)用,能根據(jù)平行線的性質(zhì)求出∠C的度數(shù)是解答此題的關(guān)鍵.12、B【解析】

根據(jù)菱形的性質(zhì)得出△DAB是等邊三角形,進(jìn)而利用全等三角形的判定得出△ABG≌△DBH,得出四邊形GBHD的面積等于△ABD的面積,進(jìn)而求出即可.【詳解】連接BD,∵四邊形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等邊三角形,∵AB=2,∴△ABD的高為,∵扇形BEF的半徑為2,圓心角為60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,設(shè)AD、BE相交于點G,設(shè)BF、DC相交于點H,在△ABG和△DBH中,,∴△ABG≌△DBH(ASA),∴四邊形GBHD的面積等于△ABD的面積,∴圖中陰影部分的面積是:S扇形EBF-S△ABD==.故選B.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】

作AB的中點E,連接EM、CE,根據(jù)直角三角形斜邊上的中線等于斜邊的一半以及三角形的中位線定理求得CE和EM的長,然后在△CEM中根據(jù)三邊關(guān)系即可求解.【詳解】作AB的中點E,連接EM、CE,在直角△ABC中,AB===10,∵E是直角△ABC斜邊AB上的中點,∴CE=AB=5,∵M(jìn)是BD的中點,E是AB的中點,∴ME=AD=2,∴在△CEM中,5-2≤CM≤5+2,即3≤CM≤1,∴最大值為1,故答案為1.【點睛】本題考查了點與圓的位置關(guān)系、三角形的中位線定理的知識,要結(jié)合勾股定理、直角三角形斜邊上的中線等于斜邊的一半解答.14、1.【解析】試題分析:根據(jù)分式的值為0的條件列出關(guān)于a的不等式組,求出a的值即可.試題解析:∵分式a2∴a2解得a=1.考點:分式的值為零的條件.15、120°【解析】

設(shè)扇形的半徑為r,圓心角為n°.利用扇形面積公式求出r,再利用弧長公式求出圓心角即可.【詳解】設(shè)扇形的半徑為r,圓心角為n°.由題意:,∴r=4,∴∴n=120,故答案為120°【點睛】本題考查扇形的面積的計算,弧長公式等知識,解題的關(guān)鍵是掌握基本知識.16、40【解析】如圖,∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°﹣50°=40°,故答案為:40.17、(1)互相垂直;;(2)結(jié)論仍然成立,證明見解析;(3)135°.【解析】

(1)結(jié)合已知角度以及利用銳角三角函數(shù)關(guān)系求出AB的長,進(jìn)而得出答案;

(2)利用已知得出△BEC∽△AFC,進(jìn)而得出∠1=∠2,即可得出答案;

(3)過點D作DH⊥BC于H,則DB=4-(6-2)=2-2,進(jìn)而得出BH=-1,DH=3-,求出CH=BH,得出∠DCA=45°,進(jìn)而得出答案.【詳解】解:(1)如圖1,線段BE與AF的位置關(guān)系是互相垂直;

∵∠ACB=90°,BC=2,∠A=30°,

∴AC=2,

∵點E,F(xiàn)分別是線段BC,AC的中點,

∴=;(2))如圖2,∵點E,F(xiàn)分別是線段BC,AC的中點,

∴EC=BC,F(xiàn)C=AC,

∴,

∵∠BCE=∠ACF=α,

∴△BEC∽△AFC,

∴,

∴∠1=∠2,

延長BE交AC于點O,交AF于點M

∵∠BOC=∠AOM,∠1=∠2

∴∠BCO=∠AMO=90°

∴BE⊥AF;(3)如圖3,∵∠ACB=90°,BC=2,∠A=30°∴AB=4,∠B=60°過點D作DH⊥BC于H∴DB=4-(6-2)=2-2,∴BH=-1,DH=3-,又∵CH=2-(-1)=3-,∴CH=BH,∴∠HCD=45°,∴∠DCA=45°,α=180°-45°=135°.18、2【解析】

由題意得出△ABP為等邊三角形,在Rt△ACO2中,AO2=即可.【詳解】由題意易知:PO1⊥AB,∵∠APB=60°∴△ABP為等邊三角形,AC=BC=3∴圓心角∠AO2O1=60°∴在Rt△ACO2中,AO2==2.故答案為2.【點睛】本題考查的知識點是圓的性質(zhì),解題的關(guān)鍵是熟練的掌握圓的性質(zhì).三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)(2)6.03米【解析】

分析:延長ED,AM交于點P,由∠CDE=162°及三角形外角的性質(zhì)可得出結(jié)果;(2)利用解直角三角形求出PC,再利用PC+AC-EF即可得解.詳解:(1)如圖,延長ED,AM交于點P,∵DE∥AB,∴,即∠MPD=90°∵∠CDE=162°∴(2)如圖,在Rt△PCD中,CD=3米,∴PC=米∵AC=5.5米,EF=0.4米,∴米答:攝像頭下端點F到地面AB的距離為6.03米.點睛:本題考查了解直角三角形的應(yīng)用,解決此類問題要了解角之間的關(guān)系,找到已知和未知相關(guān)聯(lián)的的直角三角形,當(dāng)圖形中沒有直角三角形時,要通過作高線或垂線構(gòu)造直角三角形.20、.【解析】

先計算括號里面的,再利用除法化簡原式,【詳解】,=,=,=,=,由a2+a﹣6=0,得a=﹣3或a=2,∵a﹣2≠0,∴a≠2,∴a=﹣3,當(dāng)a=﹣3時,原式=.【點睛】本題考查了分式的化簡求值及一元二次方程的解,解題的關(guān)鍵是熟練掌握分式的混合運(yùn)算.21、(1)y=﹣(x﹣1)2+4;(2)C(﹣1,0),D(3,0);6;(3)P(1+,),或P(1﹣,)【解析】

(1)設(shè)拋物線頂點式解析式y(tǒng)=a(x-1)2+4,然后把點B的坐標(biāo)代入求出a的值,即可得解;

(2)令y=0,解方程得出點C,D坐標(biāo),再用三角形面積公式即可得出結(jié)論;

(3)先根據(jù)面積關(guān)系求出點P的坐標(biāo),求出點P的縱坐標(biāo),代入拋物線解析式即可求出點P的坐標(biāo).【詳解】解:(1)、∵拋物線的頂點為A(1,4),∴設(shè)拋物線的解析式y(tǒng)=a(x﹣1)2+4,把點B(0,3)代入得,a+4=3,解得a=﹣1,∴拋物線的解析式為y=﹣(x﹣1)2+4;(2)由(1)知,拋物線的解析式為y=﹣(x﹣1)2+4;令y=0,則0=﹣(x﹣1)2+4,∴x=﹣1或x=3,∴C(﹣1,0),D(3,0);∴CD=4,∴S△BCD=CD×|yB|=×4×3=6;(3)由(2)知,S△BCD=CD×|yB|=×4×3=6;CD=4,∵S△PCD=S△BCD,∴S△PCD=CD×|yP|=×4×|yP|=3,∴|yP|=,∵點P在x軸上方的拋物線上,∴yP>0,∴yP=,∵拋物線的解析式為y=﹣(x﹣1)2+4;∴=﹣(x﹣1)2+4,∴x=1±,∴P(1+,),或P(1﹣,).【點睛】本題考查的是二次函數(shù)的綜合應(yīng)用,熟練掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.22、-1.【解析】

先化簡題目中的式子,再將x的值代入化簡后的式子即可解答本題.【詳解】解:原式=,=,=,=﹣,當(dāng)x=1時,原式=﹣=﹣1.【點睛】本題主要考查分式的化簡求值,解題的關(guān)鍵是掌握分式的混合運(yùn)算順序和運(yùn)算法則23、C【解析】

利用二次根式有意義的條件和判別式的意義得到,然后解不等式組即可.【詳解】根據(jù)題意得,解得-3≤m≤1.故選C.【點睛】本題考查了根的判別式:一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關(guān)系:當(dāng)△>0時,方程有兩個不相等的兩個實數(shù)根;當(dāng)△=0時,方程有兩個相等的兩個實數(shù)根;當(dāng)△<0時,方程無實數(shù)根.24、(1)詳見解析;(2)的長為1;(3)m的值為或;與面積比為或.【解析】

由知,再由知、,據(jù)此可得,證≌即可得;

易知四邊形ABEF是矩形,設(shè),可得,證≌得,在中,由,列方程求解可得答案;

分點C在AF的左側(cè)和右側(cè)兩種情況求解:左側(cè)時由知、、,在中,由可得關(guān)于m的方程,解之可得;右側(cè)時,由知、、,利用勾股定理求解可得.作于點G,延長GD交BE于點H,由≌知,據(jù)此可得,再分點D在矩形內(nèi)部和外部的情況求解可得.【詳解】如圖1,,,,、,,,≌,.,,,,,四邊形ABEF是矩形,設(shè),則,,,,,≌,,≌,,在中,,即,解得:,的長為1.如圖1,當(dāng)點C在AF的左側(cè)時,,則,,,,在中,由可得,解得:負(fù)值舍去;如圖2,當(dāng)點C在AF的右側(cè)時,,,,,,在中,由可得,解得:負(fù)值舍去;綜上,m的值為或;如圖3,過點D作于點G,延長GD交BE于點H,≌,,又,且,,當(dāng)點D在矩形ABEF的內(nèi)部時,由可設(shè)、,則,,則;如圖4,當(dāng)點D在矩形ABEF的外部時,由可設(shè)、,則,,則,綜上,與面積比為或.【點睛】本題考查了四邊形的綜合問題,解題的關(guān)鍵是掌握矩形的判定與性質(zhì)、全等三角形的判定和性質(zhì)及勾股定理、三角形的面積等知識點.25、(1)PM=PN,PM⊥PN(2)等腰直角三角形,理由見解析(3)【解析】

(1)由等腰直角三角形的性質(zhì)易證△ACE≌△BCD,由此可得AE=BD,再根據(jù)三角形中位線定理即可得到PM=PN,由平行線的性質(zhì)可得PM⊥PN;(2)(1)中的結(jié)論仍舊成立,由(1)中的證明思路即可證明;(3)由(2)可知△PMN是等腰直角三角形,PM=BD,推出當(dāng)BD的值最大時,PM的值最大,△PMN的面積最大,推出當(dāng)B、C、D共線時,BD的最大值=BC+CD=6,由此即可解決問題;【詳解】解:(1)PM=PN,PM⊥PN,理由如下:延長AE交BD于O,∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∵∠EAC+∠AEC=90°,∠AEC=∠BEO,∴∠CBD+∠BEO=90°,∴∠BOE=90°,即AE⊥BD,∵點M、N分別是斜邊AB、DE的中點,點P為AD的中點,∴PM=BD,PN=AE,∴PM=PM,∵PM∥BD,PN∥AE,AE⊥BD,∴∠NPD=∠EAC,∠MPA=∠BDC,∠EAC+∠BDC=90°,∴∠MPA+∠NPC=90°,∴∠MPN=90°,即PM⊥PN,故答案是:PM=PN,PM⊥PN;(2)如圖②中,設(shè)AE交BC于O,∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°,∴∠ACB+∠BCE=∠ECD+∠BCE,∴∠ACE=∠BCD,∴△ACE≌△BCD,∴AE=BD,∠CAE=∠CBD,又∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°,∵點P、M、N分別為AD、AB、DE的中點,∴PM=BD,PM∥BD,PN=AE,PN∥AE,∴PM=PN,∴∠MGE+∠BHA=180°,∴∠MGE=90°,∴∠MPN=90°,∴PM⊥PN;(3)由(2)可知△PMN是等腰直角三角形,PM=BD,∴當(dāng)BD的值最大時,PM的值最大,△PMN的面積最大,∴當(dāng)B、C、D共線時,BD的最大值=BC+CD=6,∴PM=PN=3,∴△PMN的面積的最大值=×3×3=.【點睛】本題考查的是幾何變換綜合題,熟知等腰直角三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、三角形中位線定理的運(yùn)用,解題的關(guān)鍵是正確尋找全等三角形解決問題,學(xué)會利用三角形的三邊關(guān)系解決最值問題,屬于中考壓軸題.26、(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論