![湖南省婁底市冷水江市重點達標名校2024年十校聯(lián)考最后數學試題含解析_第1頁](http://file4.renrendoc.com/view14/M05/0E/3E/wKhkGWZXw0WAL54UAAIzX1yS4N8749.jpg)
![湖南省婁底市冷水江市重點達標名校2024年十校聯(lián)考最后數學試題含解析_第2頁](http://file4.renrendoc.com/view14/M05/0E/3E/wKhkGWZXw0WAL54UAAIzX1yS4N87492.jpg)
![湖南省婁底市冷水江市重點達標名校2024年十校聯(lián)考最后數學試題含解析_第3頁](http://file4.renrendoc.com/view14/M05/0E/3E/wKhkGWZXw0WAL54UAAIzX1yS4N87493.jpg)
![湖南省婁底市冷水江市重點達標名校2024年十校聯(lián)考最后數學試題含解析_第4頁](http://file4.renrendoc.com/view14/M05/0E/3E/wKhkGWZXw0WAL54UAAIzX1yS4N87494.jpg)
![湖南省婁底市冷水江市重點達標名校2024年十校聯(lián)考最后數學試題含解析_第5頁](http://file4.renrendoc.com/view14/M05/0E/3E/wKhkGWZXw0WAL54UAAIzX1yS4N87495.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖南省婁底市冷水江市重點達標名校2024年十校聯(lián)考最后數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.已知3x+y=6,則xy的最大值為()A.2 B.3 C.4 D.62.下列幾何體是由4個相同的小正方體搭成的,其中左視圖與俯視圖相同的是()A. B. C. D.3.對于反比例函數y=(k≠0),下列所給的四個結論中,正確的是()A.若點(3,6)在其圖象上,則(﹣3,6)也在其圖象上B.當k>0時,y隨x的增大而減小C.過圖象上任一點P作x軸、y軸的線,垂足分別A、B,則矩形OAPB的面積為kD.反比例函數的圖象關于直線y=﹣x成軸對稱4.一次函數y=ax+b與反比例函數,其中ab<0,a、b為常數,它們在同一坐標系中的圖象可以是()A. B. C. D.5.如圖,在△ABC中,CD⊥AB于點D,E,F分別為AC,BC的中點,AB=10,BC=8,DE=4.5,則△DEF的周長是()A.9.5 B.13.5 C.14.5 D.176.下列方程中是一元二次方程的是()A. B.C. D.7.若分式方程無解,則a的值為()A.0 B.-1 C.0或-1 D.1或-18.濟南市某天的氣溫:-5~8℃,則當天最高與最低的溫差為()A.13 B.3 C.-13 D.-39.如圖是由若干個小正方體組成的幾何體從上面看到的圖形,小正方形中的數字表示該位置小正方體的個數,這個幾何體從正面看到的圖形是()A. B. C. D.10.如圖,在△ABC中,過點B作PB⊥BC于B,交AC于P,過點C作CQ⊥AB,交AB延長線于Q,則△ABC的高是()A.線段PB B.線段BC C.線段CQ D.線段AQ11.一個幾何體由大小相同的小正方體搭成,從上面看到的幾何體的形狀圖如圖所示,其中小正方形中的數字表示在這個位置小正方體的個數.從左面看到的這個幾何體的形狀圖的是()A. B. C. D.12.某種商品每件的標價是270元,按標價的八折銷售時,仍可獲利20%,則這種商品每件的進價為()A.180元 B.200元 C.225元 D.259.2元二、填空題:(本大題共6個小題,每小題4分,共24分.)13.2018年5月13日,中國首艘國產航空母艦首次執(zhí)行海上試航任務,其排水量超過6萬噸,將數60000用科學記數法表示應為_______________.14.在平面直角坐標系中,將點A(﹣3,2)向右平移3個單位長度,再向下平移2個單位長度,那么平移后對應的點A′的坐標是_____.15.如圖,已知⊙O是△ABD的外接圓,AB是⊙O的直徑,CD是⊙O的弦,∠ABD=58°,則∠BCD的度數是_____.16.如圖,直線與軸交于點,與軸交于點,點在軸的正半軸上,,過點作軸交直線于點,若反比例函數的圖象經過點,則的值為_________________.17.如圖,點A,B,C在⊙O上,四邊形OABC是平行四邊形,OD⊥AB于點E,交⊙O于點D,則∠BAD=_______°.18.如圖,四邊形ABCD是菱形,☉O經過點A,C,D,與BC相交于點E,連接AC,AE,若∠D=78°,則∠EAC=________°.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,拋物線與x軸交于A,B,與y軸交于點C(0,2),直線經過點A,C.(1)求拋物線的解析式;(2)點P為直線AC上方拋物線上一動點;①連接PO,交AC于點E,求的最大值;②過點P作PF⊥AC,垂足為點F,連接PC,是否存在點P,使△PFC中的一個角等于∠CAB的2倍?若存在,請直接寫出點P的坐標;若不存在,請說明理由.20.(6分)如圖①,AB是⊙O的直徑,CD為弦,且AB⊥CD于E,點M為上一動點(不包括A,B兩點),射線AM與射線EC交于點F.(1)如圖②,當F在EC的延長線上時,求證:∠AMD=∠FMC.(2)已知,BE=2,CD=1.①求⊙O的半徑;②若△CMF為等腰三角形,求AM的長(結果保留根號).21.(6分)A,B兩地相距20km.甲、乙兩人都由A地去B地,甲騎自行車,平均速度為10km/h;乙乘汽車,平均速度為40km/h,且比甲晚1.5h出發(fā).設甲的騎行時間為x(h)(0≤x≤2)(1)根據題意,填寫下表:時間x(h)與A地的距離0.51.8_____甲與A地的距離(km)520乙與A地的距離(km)012(2)設甲,乙兩人與A地的距離為y1(km)和y2(km),寫出y1,y2關于x的函數解析式;(3)設甲,乙兩人之間的距離為y,當y=12時,求x的值.22.(8分)解方程.23.(8分)已知:不等式≤2+x(1)求不等式的解;(2)若實數a滿足a>2,說明a是否是該不等式的解.24.(10分)已知點O是正方形ABCD對角線BD的中點.(1)如圖1,若點E是OD的中點,點F是AB上一點,且使得∠CEF=90°,過點E作ME∥AD,交AB于點M,交CD于點N.①∠AEM=∠FEM;②點F是AB的中點;(2)如圖2,若點E是OD上一點,點F是AB上一點,且使,請判斷△EFC的形狀,并說明理由;(3)如圖3,若E是OD上的動點(不與O,D重合),連接CE,過E點作EF⊥CE,交AB于點F,當時,請猜想的值(請直接寫出結論).25.(10分)某高中學校為高一新生設計的學生板凳的正面視圖如圖所示,其中BA=CD,BC=20cm,BC、EF平行于地面AD且到地面AD的距離分別為40cm、8cm.為使板凳兩腿底端A、D之間的距離為50cm,那么橫梁EF應為多長?(材質及其厚度等暫忽略不計).26.(12分)(1)如圖1,在矩形ABCD中,點O在邊AB上,∠AOC=∠BOD,求證:AO=OB;(2)如圖2,AB是⊙O的直徑,PA與⊙O相切于點A,OP與⊙O相交于點C,連接CB,∠OPA=40°,求∠ABC的度數.27.(12分)如圖,已知一次函數y=kx+b的圖象與反比例函數y=8(1)求一次函數的解析式;(2)求ΔAOB的面積。
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
根據已知方程得到y(tǒng)=-1x+6,將其代入所求的代數式后得到:xy=-1x2+6x,利用配方法求該式的最值.【詳解】解:∵1x+y=6,∴y=-1x+6,∴xy=-1x2+6x=-1(x-1)2+1.∵(x-1)2≥0,∴-1(x-1)2+1≤1,即xy的最大值為1.故選B.【點睛】考查了二次函數的最值,解題時,利用配方法和非負數的性質求得xy的最大值.2、C【解析】試題分析:從物體的前面向后面投射所得的視圖稱主視圖(正視圖)——能反映物體的前面形狀;從物體的上面向下面投射所得的視圖稱俯視圖——能反映物體的上面形狀;從物體的左面向右面投射所得的視圖稱左視圖——能反映物體的左面形狀.選項C左視圖與俯視圖都是,故選C.3、D【解析】分析:根據反比例函數的性質一一判斷即可;詳解:A.若點(3,6)在其圖象上,則(﹣3,6)不在其圖象上,故本選項不符合題意;B.當k>0時,y隨x的增大而減小,錯誤,應該是當k>0時,在每個象限,y隨x的增大而減?。还时具x項不符合題意;C.錯誤,應該是過圖象上任一點P作x軸、y軸的線,垂足分別A、B,則矩形OAPB的面積為|k|;故本選項不符合題意;D.正確,本選項符合題意.故選D.點睛:本題考查了反比例函數的性質,解題的關鍵是熟練掌握反比例函數的性質,靈活運用所學知識解決問題,屬于中考??碱}型.4、C【解析】
根據一次函數的位置確定a、b的大小,看是否符合ab<0,計算a-b確定符號,確定雙曲線的位置.【詳解】A.由一次函數圖象過一、三象限,得a>0,交y軸負半軸,則b<0,滿足ab<0,∴a?b>0,∴反比例函數y=的圖象過一、三象限,所以此選項不正確;B.由一次函數圖象過二、四象限,得a<0,交y軸正半軸,則b>0,滿足ab<0,∴a?b<0,∴反比例函數y=的圖象過二、四象限,所以此選項不正確;C.由一次函數圖象過一、三象限,得a>0,交y軸負半軸,則b<0,滿足ab<0,∴a?b>0,∴反比例函數y=的圖象過一、三象限,所以此選項正確;D.由一次函數圖象過二、四象限,得a<0,交y軸負半軸,則b<0,滿足ab>0,與已知相矛盾所以此選項不正確;故選C.【點睛】此題考查反比例函數的圖象,一次函數的圖象,解題關鍵在于確定a、b的大小5、B【解析】
由三角形中位線定理和直角三角形斜邊上的中線等于斜邊的一半解答.【詳解】∵在△ABC中,CD⊥AB于點D,E,F分別為AC,BC的中點,∴DE=AC=4.1,DF=BC=4,EF=AB=1,∴△DEF的周長=(AB+BC+AC)=×(10+8+9)=13.1.故選B.【點睛】考查了三角形中位線定理和直角三角形斜邊上的中線,三角形的中位線平行于第三邊,且等于第三邊的一半.6、C【解析】
找到只含有一個未知數,未知數的最高次數是2,二次項系數不為0的整式方程的選項即可.【詳解】解:A、當a=0時,不是一元二次方程,故本選項錯誤;B、是分式方程,故本選項錯誤;C、化簡得:是一元二次方程,故本選項正確;D、是二元二次方程,故本選項錯誤;故選:C.【點睛】本題主要考查一元二次方程,熟練掌握一元二次方程的定義是解題的關鍵.7、D【解析】試題分析:在方程兩邊同乘(x+1)得:x-a=a(x+1),整理得:x(1-a)=2a,當1-a=0時,即a=1,整式方程無解,當x+1=0,即x=-1時,分式方程無解,把x=-1代入x(1-a)=2a得:-(1-a)=2a,解得:a=-1,故選D.點睛:本題考查了分式方程的解,解決本題的關鍵是熟記分式方程無解的條件.8、A【解析】由題意可知,當天最高溫與最低溫的溫差為8-(-5)=13℃,故選A.9、C【解析】
先根據俯視圖判斷出幾何體的形狀,再根據主視圖是從正面看畫出圖形即可.【詳解】解:由俯視圖可知,幾何體共有兩排,前面一排從左到右分別是1個和2個小正方體搭成兩個長方體,
后面一排分別有2個、3個、1個小正方體搭成三個長方體,
并且這兩排右齊,故從正面看到的視圖為:.
故選:C.【點睛】本題考查幾何體三視圖,熟記三視圖的概念并判斷出物體的排列方式是解題的關鍵.10、C【解析】
根據三角形高線的定義即可解題.【詳解】解:當AB為△ABC的底時,過點C向AB所在直線作垂線段即為高,故CQ是△ABC的高,故選C.【點睛】本題考查了三角形高線的定義,屬于簡單題,熟悉高線的作法是解題關鍵.11、B【解析】分析:由已知條件可知,從正面看有1列,每列小正方數形數目分別為4,1,2;從左面看有1列,每列小正方形數目分別為1,4,1.據此可畫出圖形.詳解:由俯視圖及其小正方體的分布情況知,該幾何體的主視圖為:該幾何體的左視圖為:故選:B.點睛:此題主要考查了幾何體的三視圖畫法.由幾何體的俯視圖及小正方形內的數字,可知主視圖的列數與俯視圖的列數相同,且每列小正方形數目為俯視圖中該列小正方形數字中的最大數字.左視圖的列數與俯視圖的行數相同,且每列小正方形數目為俯視圖中相應行中正方形數字中的最大數字.12、A【解析】
設這種商品每件進價為x元,根據題中的等量關系列方程求解.【詳解】設這種商品每件進價為x元,則根據題意可列方程270×0.8-x=0.2x,解得x=180.故選A.【點睛】本題主要考查一元一次方程的應用,解題的關鍵是確定未知數,根據題中的等量關系列出正確的方程.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】【分析】科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】60000小數點向左移動4位得到6,所以60000用科學記數法表示為:6×1,故答案為:6×1.【點睛】本題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.14、(0,0)【解析】
根據坐標的平移規(guī)律解答即可.【詳解】將點A(-3,2)向右平移3個單位長度,再向下平移2個單位長度,那么平移后對應的點A′的坐標是(-3+3,2-2),即(0,0),故答案為(0,0).【點睛】此題主要考查坐標與圖形變化-平移.平移中點的變化規(guī)律是:橫坐標右移加,左移減;縱坐標上移加,下移減.15、32°【解析】
根據直徑所對的圓周角是直角得到∠ADB=90°,求出∠A的度數,根據圓周角定理解答即可.【詳解】∵AB是⊙O的直徑,
∴∠ADB=90°,
∵∠ABD=58°,
∴∠A=32°,
∴∠BCD=32°,
故答案為32°.16、1【解析】
先求出直線y=x+2與坐標軸的交點坐標,再由三角形的中位線定理求出CD,得到C點坐標.【詳解】解:令x=0,得y=x+2=0+2=2,
∴B(0,2),
∴OB=2,
令y=0,得0=x+2,解得,x=-6,
∴A(-6,0),
∴OA=OD=6,
∵OB∥CD,
∴CD=2OB=4,
∴C(6,4),
把c(6,4)代入y=(k≠0)中,得k=1,
故答案為:1.【點睛】本題考查了一次函數與反比例函數的綜合,需要掌握求函數圖象與坐標軸的交點坐標方法,三角形的中位線定理,待定系數法.本題的關鍵是求出C點坐標.17、15【解析】
根據圓的基本性質得出四邊形OABC為菱形,∠AOB=60°,然后根據同弧所對的圓心角與圓周角之間的關系得出答案.【詳解】解:∵OABC為平行四邊形,OA=OC=OB,∴四邊形OABC為菱形,∠AOB=60°,∵OD⊥AB,∴∠BOD=30°,∴∠BAD=30°÷2=15°.故答案為:15.【點睛】本題主要考查的是圓的基本性質問題,屬于基礎題型.根據題意得出四邊形OABC為菱形是解題的關鍵.18、1.【解析】
解:∵四邊形ABCD是菱形,∠D=78°,∴∠ACB=(180°-∠D)=51°,又∵四邊形AECD是圓內接四邊形,∴∠AEB=∠D=78°,∴∠EAC=∠AEB-∠ACB=1°.故答案為:1°三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1);(2)①有最大值1;②(2,3)或(,)【解析】
(1)根據自變量與函數值的對應關系,可得A,C點坐標,根據代定系數法,可得函數解析式;(2)①根據相似三角形的判定與性質,可得,根據平行于y軸直線上兩點間的距離是較大的縱坐標減較小的縱坐標,可得二次函數,根據二次函數的性質,可得答案;②根據勾股定理的逆定理得到△ABC是以∠ACB為直角的直角三角形,取AB的中點D,求得D(,0),得到DA=DC=DB=,過P作x軸的平行線交y軸于R,交AC于G,情況一:如圖,∠PCF=2∠BAC=∠DGC+∠CDG,情況二,∠FPC=2∠BAC,解直角三角形即可得到結論.【詳解】(1)當x=0時,y=2,即C(0,2),當y=0時,x=4,即A(4,0),將A,C點坐標代入函數解析式,得,解得,拋物線的解析是為;
(2)過點P向x軸做垂線,交直線AC于點M,交x軸于點N,∵直線PN∥y軸,∴△PEM~△OEC,∴把x=0代入y=-x+2,得y=2,即OC=2,設點P(x,-x2+x+2),則點M(x,-x+2),∴PM=(-x2+x+2)-(-x+2)=-x2+2x=-(x-2)2+2,∴=,∵0<x<4,∴當x=2時,=有最大值1.②∵A(4,0),B(-1,0),C(0,2),∴AC=2,BC=,AB=5,∴AC2+BC2=AB2,∴△ABC是以∠ACB為直角的直角三角形,取AB的中點D,∴D(,0),∴DA=DC=DB=,∴∠CDO=2∠BAC,∴tan∠CDO=tan(2∠BAC)=,過P作x軸的平行線交y軸于R,交AC的延長線于G,情況一:如圖,∴∠PCF=2∠BAC=∠PGC+∠CPG,∴∠CPG=∠BAC,∴tan∠CPG=tan∠BAC=,即,令P(a,-a2+a+2),∴PR=a,RC=-a2+a,∴,∴a1=0(舍去),a2=2,∴xP=2,-a2+a+2=3,P(2,3)情況二,∴∠FPC=2∠BAC,∴tan∠FPC=,設FC=4k,∴PF=3k,PC=5k,∵tan∠PGC=,∴FG=6k,∴CG=2k,PG=3k,∴RC=k,RG=k,PR=3k-k=k,∴,∴a1=0(舍去),a2=,xP=,-a2+a+2=,即P(,),綜上所述:P點坐標是(2,3)或(,).【點睛】本題考查了二次函數綜合題,解(1)的關鍵是待定系數法;解(2)的關鍵是利用相似三角形的判定與性質得出,又利用了二次函數的性質;解(3)的關鍵是利用解直角三角形,要分類討論,以防遺漏.20、(1)詳見解析;(2)2;②1或【解析】
(1)想辦法證明∠AMD=∠ADC,∠FMC=∠ADC即可解決問題;(2)①在Rt△OCE中,利用勾股定理構建方程即可解決問題;②分兩種情形討論求解即可.【詳解】解:(1)證明:如圖②中,連接AC、AD.∵AB⊥CD,∴CE=ED,∴AC=AD,∴∠ACD=∠ADC,∵∠AMD=∠ACD,∴∠AMD=∠ADC,∵∠FMC+∠AMC=110°,∠AMC+∠ADC=110°,∴∠FMC=∠ADC,∴∠FMC=∠ADC,∴∠FMC=∠AMD.(2)解:①如圖②﹣1中,連接OC.設⊙O的半徑為r.在Rt△OCE中,∵OC2=OE2+EC2,∴r2=(r﹣2)2+42,∴r=2.②∵∠FMC=∠ACD>∠F,∴只有兩種情形:MF=FC,FM=MC.如圖③中,當FM=FC時,易證明CM∥AD,∴,∴AM=CD=1.如圖④中,當MC=MF時,連接MO,延長MO交AD于H.∵∠MFC=∠MCF=∠MAD,∠FMC=∠AMD,∴∠ADM=∠MAD,∴MA=MD,∴,∴MH⊥AD,AH=DH,在Rt△AED中,AD=,∴AH=,∵tan∠DAE=,∴OH=,∴MH=2+,在Rt△AMH中,AM=.【點睛】本題考查了圓的綜合題:熟練掌握與圓有關的性質、圓的內接正方形的性質和旋轉的性質;靈活利用全等三角形的性質;會利用面積的和差計算不規(guī)則幾何圖形的面積.21、(1)18,2,20(2)(3)當y=12時,x的值是1.2或1.6【解析】
(Ⅰ)根據路程、時間、速度三者間的關系通過計算即可求得相應答案;(Ⅱ)根據路程=速度×時間結合甲、乙的速度以及時間范圍即可求得答案;(Ⅲ)根據題意,得,然后分別將y=12代入即可求得答案.【詳解】(Ⅰ)由題意知:甲、乙二人平均速度分別是平均速度為10km/h和40km/h,且比甲晚1.5h出發(fā),當時間x=1.8時,甲離開A的距離是10×1.8=18(km),當甲離開A的距離20km時,甲的行駛時間是20÷10=2(時),此時乙行駛的時間是2﹣1.5=0.5(時),所以乙離開A的距離是40×0.5=20(km),故填寫下表:(Ⅱ)由題意知:y1=10x(0≤x≤1.5),y2=;(Ⅲ)根據題意,得,當0≤x≤1.5時,由10x=12,得x=1.2,當1.5<x≤2時,由﹣30x+60=12,得x=1.6,因此,當y=12時,x的值是1.2或1.6.【點睛】本題考查了一次函數的應用,理清題意,弄清各數量間的關系是解題的關鍵.22、原分式方程無解.【解析】
根據解分式方程的方法可以解答本方程,去分母將分式方程化為整式方程,解整式方程,驗證.【詳解】方程兩邊乘(x﹣1)(x+2),得x(x+2)﹣(x﹣1)(x+2)=3即:x2+2x﹣x2﹣x+2=3整理,得x=1檢驗:當x=1時,(x﹣1)(x+2)=0,∴原方程無解.【點睛】本題考查解分式方程,解題的關鍵是明確解放式方程的計算方法.23、(1)x≥﹣1;(2)a是不等式的解.【解析】
(1)根據解一元一次不等式基本步驟:去分母、去括號、移項、合并同類項、系數化為1可得.
(2)根據不等式的解的定義求解可得【詳解】解:(1)去分母得:2﹣x≤3(2+x),去括號得:2﹣x≤6+3x,移項、合并同類項得:﹣4x≤4,系數化為1得:x≥﹣1.(2)∵a>2,不等式的解集為x≥﹣1,而2>﹣1,∴a是不等式的解.【點睛】本題考查了解一元一次不等式,掌握解一元一次不等式的步驟是解題的關鍵24、(1)①證明見解析;②證明見解析;(2)△EFC是等腰直角三角形.理由見解析;(3).【解析】試題分析:(1)①過點E作EG⊥BC,垂足為G,根據ASA證明△CEG≌△FEM得CE=FE,再根據SAS證明△ABE≌△CBE得AE=CE,在△AEF中根據等腰三角形“三線合一”即可證明結論成立;②設AM=x,則AF=2x,在Rt△DEN中,∠EDN=45°,DE=DN=x,DO=2DE=2x,BD=2DO=4x.在Rt△ABD中,∠ADB=45°,AB=BD·sin45°=4x,又AF=2x,從而AF=AB,得到點F是AB的中點.;(2)過點E作EM⊥AB,垂足為M,延長ME交CD于點N,過點E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),再證明△AME≌△FME(SAS),從而可得△EFC是等腰直角三角形.(3)方法同第(2)小題.過點E作EM⊥AB,垂足為M,延長ME交CD于點N,過點E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),再證明△AEM≌△FEM(ASA),得AM=FM,設AM=x,則AF=2x,DN=x,DE=x,BD=x,AB=x,=2x:x=.試題解析:(1)①過點E作EG⊥BC,垂足為G,則四邊形MBGE為正方形,ME=GE,∠MFG=90°,即∠MEF+∠FEG=90°,又∠CEG+∠FEG=90°,∴∠CEG=∠FEM.又GE=ME,∠EGC=∠EMF=90°,∴△CEG≌△FEM.∴CE=FE,∵四邊形ABCD為正方形,∴AB=CB,∠ABE=∠CBE=45°,BE=BE,∴△ABE≌△CBE.∴AE=CE,又CE=FE,∴AE=FE,又EM⊥AB,∴∠AEM=∠FEM.②設AM=x,∵AE=FE,又EM⊥AB,∴AM=FM=x,∴AF=2x,由四邊形AMND為矩形知,DN=AM=x,在Rt△DEN中,∠EDN=45°,∴DE=DN=x,∴DO=2DE=2x,∴BD=2DO=4x.在Rt△ABD中,∠ADB=45°,∴AB=BD·sin45°=4x·=4x,又AF=2x,∴AF=AB,∴點F是AB的中點.(2)△EFC是等腰直角三角形.過點E作EM⊥AB,垂足為M,延長ME交CD于點N,過點E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),∴∠AEM=∠CEG,設AM=x,則DN=AM=x,DE=x,DO=3DE=3x,BD=2DO=6x.∴AB=6x,又,∴AF=2x,又AM=x,∴AM=MF=x,∴△AME≌△FME(SAS),∴AE=FE,∠AEM=∠FEM,又AE=CE,∠AEM=∠CEG,∴FE=CE,∠FEM=∠CEG,又∠MEG=90°,∴∠MEF+∠FEG=90°,∴∠CEG+∠FEG=90°,即∠CEF=90°,又FE=CE,∴△EFC是等腰直角三角形.(3)過點E作EM⊥AB,垂足為M,延長ME交CD于點N,過點E作EG⊥BC
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 人工智能加速智能駕駛的進步與普及
- 2025至2030年中國生化黃腐酸數據監(jiān)測研究報告
- 2025至2030年中國水用電加熱器數據監(jiān)測研究報告
- 2025至2030年中國無軌堆垛機數據監(jiān)測研究報告
- 2025至2030年中國園林噴頭數據監(jiān)測研究報告
- 2025年中國H.I交配番茄市場調查研究報告
- 2025至2030年中國花魚數據監(jiān)測研究報告
- 2025至2030年中國手板式啟閉機數據監(jiān)測研究報告
- 2025至2030年中國包裝管理軟件數據監(jiān)測研究報告
- 2025至2030年中國助航燈光全自動監(jiān)控系統(tǒng)數據監(jiān)測研究報告
- 全新車位轉讓協(xié)議模板下載(2024版)
- 高中數學必修一試卷及答案
- 砌筑工考試卷及答案
- 呼吸治療師進修匯報
- 智慧港口和自動化集裝箱碼頭
- 2024年江西電力職業(yè)技術學院單招職業(yè)技能測試題庫及答案解析
- 天合儲能:2024儲能專用電芯白皮書
- 2024年度醫(yī)患溝通課件
- 【真題】2023年常州市中考道德與法治試卷(含答案解析)
- 劇毒化學品安全檔案(含危險化學品名錄)
- 光伏項目安全培訓課件
評論
0/150
提交評論