四川省閬中學市2022年中考數(shù)學押題卷含解析_第1頁
四川省閬中學市2022年中考數(shù)學押題卷含解析_第2頁
四川省閬中學市2022年中考數(shù)學押題卷含解析_第3頁
四川省閬中學市2022年中考數(shù)學押題卷含解析_第4頁
四川省閬中學市2022年中考數(shù)學押題卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

四川省閬中學市2022年中考數(shù)學押題卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.在中,,,,則的值是()A. B. C. D.2.方程的根是()A.x=2 B.x=0 C.x1=0,x2=-2 D.x1=0,x2=23.某校體育節(jié)有13名同學參加女子百米賽跑,它們預賽的成績各不相同,取前6名參加決賽.小穎已經知道了自己的成績,她想知道自己能否進入決賽,還需要知道這13名同學成績的()A.方差B.極差C.中位數(shù)D.平均數(shù)4.如圖,將△ABC沿BC邊上的中線AD平移到△A'B'C'的位置,已知△ABC的面積為9,陰影部分三角形的面積為1.若AA'=1,則A'D等于()A.2 B.3 C. D.5.已知方程的兩個解分別為、,則的值為()A. B. C.7 D.36.如圖,在矩形ABCD中,AB=5,AD=3,動點P滿足S△PAB=S矩形ABCD,則點P到A、B兩點距離之和PA+PB的最小值為()A. B. C.5 D.7.如圖,在⊙O中,弦AC∥半徑OB,∠BOC=50°,則∠OAB的度數(shù)為()A.25° B.50° C.60° D.30°8.如圖,已知AB是⊙O的直徑,弦CD⊥AB于E,連接BC、BD、AC,下列結論中不一定正確的是()A.∠ACB=90° B.OE=BE C.BD=BC D.9.計算a?a2的結果是()A.aB.a2C.2a2D.a310.如圖,將木條a,b與c釘在一起,∠1=70°,∠2=50°,要使木條a與b平行,木條a旋轉的度數(shù)至少是()A.10° B.20° C.50° D.70°二、填空題(共7小題,每小題3分,滿分21分)11.如圖,將三角形AOC繞點O順時針旋轉120°得三角形BOD,已知OA=4,OC=1,那么圖中陰影部分的面積為_____.(結果保留π)12.如圖,點D為矩形OABC的AB邊的中點,反比例函數(shù)的圖象經過點D,交BC邊于點E.若△BDE的面積為1,則k=________13.=________14.李明早上騎自行車上學,中途因道路施工推車步行了一段路,到學校共用時15分鐘.如果他騎自行車的平均速度是每分鐘250米,推車步行的平均速度是每分鐘80米,他家離學校的路程是2900米,設他推車步行的時間為x分鐘,那么可列出的方程是_____________.15.《孫子算經》是中國古代重要的數(shù)學著作,成書于約一千五百年前,其中有首歌謠:“今有竿不知其長,量得影長一丈五尺,立一標桿,長一尺五寸,影長五寸,問竿長幾何?”意思就是:有一根竹竿不知道有多長,量出它在太陽下的影子長一丈五尺,同時立一根一尺五寸的小標桿(如圖所示),它的影長五寸(提示:1丈=10尺,1尺=10寸),則竹竿的長為_____.16.在某一時刻,測得一根長為1.5m的標桿的影長為3m,同時測得一根旗桿的影長為26m,那么這根旗桿的高度為_____m.17.如圖,反比例函數(shù)(x>0)的圖象與矩形OABC的邊長AB、BC分別交于點E、F且AE=BE,則△OEF的面積的值為.三、解答題(共7小題,滿分69分)18.(10分)如圖,直線y=﹣x+3分別與x軸、y交于點B、C;拋物線y=x2+bx+c經過點B、C,與x軸的另一個交點為點A(點A在點B的左側),對稱軸為l1,頂點為D.(1)求拋物線y=x2+bx+c的解析式.(2)點M(1,m)為y軸上一動點,過點M作直線l2平行于x軸,與拋物線交于點P(x1,y1),Q(x2,y2),與直線BC交于點N(x3,y3),且x2>x1>1.①結合函數(shù)的圖象,求x3的取值范圍;②若三個點P、Q、N中恰好有一點是其他兩點所連線段的中點,求m的值.19.(5分)科技改變生活,手機導航極大方便了人們的出行,如圖,小明一家自駕到古鎮(zhèn)C游玩,到達A地后,導航顯示車輛應沿北偏西55°方向行駛4千米至B地,再沿北偏東35°方向行駛一段距離到達古鎮(zhèn)C,小明發(fā)現(xiàn)古鎮(zhèn)C恰好在A地的正北方向,求B、C兩地的距離(結果保留整數(shù))(參考數(shù)據:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8)20.(8分)化簡:(x+7)(x-6)-(x-2)(x+1)21.(10分)如圖,Rt△ABC中,∠ABC=90°,點D,F(xiàn)分別是AC,AB的中點,CE∥DB,BE∥DC.(1)求證:四邊形DBEC是菱形;(2)若AD=3,DF=1,求四邊形DBEC面積.22.(10分)小強的媽媽想在自家的院子里用竹籬笆圍一個面積為4平方米的矩形小花園,媽媽問九年級的小強至少需要幾米長的竹籬笆(不考慮接縫).小強根據他學習函數(shù)的經驗做了如下的探究.下面是小強的探究過程,請補充完整:建立函數(shù)模型:設矩形小花園的一邊長為x米,籬笆長為y米.則y關于x的函數(shù)表達式為________;列表(相關數(shù)據保留一位小數(shù)):根據函數(shù)的表達式,得到了x與y的幾組值,如下表:x0.511.522.533.544.55y17108.38.28.79.310.811.6描點、畫函數(shù)圖象:如圖,在平面直角坐標系xOy中,描出了以上表中各對對應值為坐標的點,根據描出的點畫出該函數(shù)的圖象;觀察分析、得出結論:根據以上信息可得,當x=________時,y有最小值.由此,小強確定籬笆長至少為________米.23.(12分)下面是小星同學設計的“過直線外一點作已知直線的平行線”的尺規(guī)作圖過程:已知:如圖,直線l和直線l外一點A求作:直線AP,使得AP∥l作法:如圖①在直線l上任取一點B(AB與l不垂直),以點A為圓心,AB為半徑作圓,與直線l交于點C.②連接AC,AB,延長BA到點D;③作∠DAC的平分線AP.所以直線AP就是所求作的直線根據小星同學設計的尺規(guī)作圖過程,使用直尺和圓規(guī),補全圖形(保留作圖痕跡)完成下面的證明證明:∵AB=AC,∴∠ABC=∠ACB(填推理的依據)∵∠DAC是△ABC的外角,∴∠DAC=∠ABC+∠ACB(填推理的依據)∴∠DAC=2∠ABC∵AP平分∠DAC,∴∠DAC=2∠DAP∴∠DAP=∠ABC∴AP∥l(填推理的依據)24.(14分)如圖是某旅游景點的一處臺階,其中臺階坡面AB和BC的長均為6m,AB部分的坡角∠BAD為45°,BC部分的坡角∠CBE為30°,其中BD⊥AD,CE⊥BE,垂足為D,E.現(xiàn)在要將此臺階改造為直接從A至C的臺階,如果改造后每層臺階的高為22cm,那么改造后的臺階有多少層?(最后一個臺階的高超過15cm且不足22cm時,按一個臺階計算.可能用到的數(shù)據:≈1.414,≈1.732)

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】

首先根據勾股定理求得AC的長,然后利用正弦函數(shù)的定義即可求解.【詳解】∵∠C=90°,BC=1,AB=4,

∴,∴,故選:D.【點睛】本題考查了三角函數(shù)的定義,求銳角的三角函數(shù)值的方法:利用銳角三角函數(shù)的定義,轉化成直角三角形的邊長的比.2、C【解析】試題解析:x(x+1)=0,

?x=0或x+1=0,

解得x1=0,x1=-1.

故選C.3、C【解析】13個不同的分數(shù)按從小到大排序后,中位數(shù)及中位數(shù)之后的共有7個數(shù),故只要知道自己的分數(shù)和中位數(shù)就可以知道是否獲獎了.故選C.4、A【解析】分析:由S△ABC=9、S△A′EF=1且AD為BC邊的中線知S△A′DE=S△A′EF=2,S△ABD=S△ABC=,根據△DA′E∽△DAB知,據此求解可得.詳解:如圖,∵S△ABC=9、S△A′EF=1,且AD為BC邊的中線,∴S△A′DE=S△A′EF=2,S△ABD=S△ABC=,∵將△ABC沿BC邊上的中線AD平移得到△A'B'C',∴A′E∥AB,∴△DA′E∽△DAB,則,即,解得A′D=2或A′D=-(舍),故選A.點睛:本題主要平移的性質,解題的關鍵是熟練掌握平移變換的性質與三角形中線的性質、相似三角形的判定與性質等知識點.5、D【解析】

由根與系數(shù)的關系得出x1+x2=5,x1?x2=2,將其代入x1+x2?x1?x2中即可得出結論.【詳解】解:∵方程x2?5x+2=0的兩個解分別為x1,x2,∴x1+x2=5,x1?x2=2,∴x1+x2?x1?x2=5?2=1.故選D.【點睛】本題考查了根與系數(shù)的關系,解題的關鍵是根據根與系數(shù)的關系得出x1+x2=5,x1?x2=2.本題屬于基礎題,難度不大,解決該題型題目時,根據根與系數(shù)的關系得出兩根之和與兩根之積是關鍵.6、D【解析】解:設△ABP中AB邊上的高是h.∵S△PAB=S矩形ABCD,∴AB?h=AB?AD,∴h=AD=2,∴動點P在與AB平行且與AB的距離是2的直線l上,如圖,作A關于直線l的對稱點E,連接AE,連接BE,則BE就是所求的最短距離.在Rt△ABE中,∵AB=5,AE=2+2=4,∴BE===,即PA+PB的最小值為.故選D.7、A【解析】如圖,∵∠BOC=50°,∴∠BAC=25°,∵AC∥OB,∴∠OBA=∠BAC=25°,∵OA=OB,∴∠OAB=∠OBA=25°.故選A.8、B【解析】

根據垂徑定理及圓周角定理進行解答即可.【詳解】∵AB是⊙O的直徑,∴∠ACB=90°,故A正確;∵點E不一定是OB的中點,∴OE與BE的關系不能確定,故B錯誤;∵AB⊥CD,AB是⊙O的直徑,∴,∴BD=BC,故C正確;∴,故D正確.故選B.【點睛】本題考查的是垂徑定理,熟知平分弦的直徑平分這條弦,并且平分弦所對的兩條弧是解答此題的關鍵.9、D【解析】a·a2=a3.故選D.10、B【解析】

要使木條a與b平行,那么∠1=∠2,從而可求出木條a至少旋轉的度數(shù).【詳解】解:∵要使木條a與b平行,∴∠1=∠2,∴當∠1需變?yōu)?0o,∴木條a至少旋轉:70o-50o=20o.故選B.【點睛】本題考查了旋轉的性質及平行線的性質:①兩直線平行同位角相等;②兩直線平行內錯角相等;③兩直線平行同旁內角互補;④夾在兩平行線間的平行線段相等.在運用平行線的性質定理時,一定要找準同位角,內錯角和同旁內角.二、填空題(共7小題,每小題3分,滿分21分)11、5π【解析】

根據旋轉的性質可以得到陰影部分的面積=扇形OAB的面積﹣扇形OCD的面積,利用扇形的面積公式計算即可求解.【詳解】∵△AOC≌△BOD,∴陰影部分的面積=扇形OAB的面積﹣扇形OCD的面積5π.故答案為:5π.【點睛】本題考查了旋轉的性質以及扇形的面積公式,正確理解:陰影部分的面積=扇形OAB的面積﹣扇形OCD的面積是解題的關鍵.12、1【解析】分析:設D(a,),利用點D為矩形OABC的AB邊的中點得到B(2a,),則E(2a,),然后利用三角形面積公式得到?a?(-)=1,最后解方程即可.詳解:設D(a,),

∵點D為矩形OABC的AB邊的中點,

∴B(2a,),

∴E(2a,),

∵△BDE的面積為1,

∴?a?(-)=1,解得k=1.

故答案為1.點睛:本題考查了反比例函數(shù)解析式的應用,根據解析式設出點的坐標,結合矩形的性質并利用平面直角坐標系中點的特征確定三角形的兩邊長,進而結合三角形的面積公式列出方程求解,可確定參數(shù)k的取值.13、13【解析】=2+9-4+6=13.故答案是:13.14、【解析】分析:根據題意把李明步行和騎車各自所走路程表達出來,再結合步行和騎車所走總里程為2900米,列出方程即可.詳解:設他推車步行的時間為x分鐘,根據題意可得:80x+250(15-x)=2900.故答案為80x+250(15-x)=2900.點睛:弄清本題中的等量關系:李明推車步行的路程+李明騎車行駛的路程=2900是解題的關鍵.15、四丈五尺【解析】

根據同一時刻物高與影長成正比可得出結論.【詳解】解:設竹竿的長度為x尺,∵竹竿的影長=一丈五尺=15尺,標桿長=一尺五寸=1.5尺,影長五寸=0.5尺,∴=,解得x=45(尺).故答案為:四丈五尺.【點睛】本題考查的是相似三角形的應用,熟知同一時刻物髙與影長成正比是解答此題的關鍵.16、13【解析】

根據同時同地物高與影長成比列式計算即可得解.【詳解】解:設旗桿高度為x米,由題意得,,解得x=13.故答案為13.【點睛】本題考查投影,解題的關鍵是應用相似三角形.17、【解析】試題分析:如圖,連接OB.∵E、F是反比例函數(shù)(x>0)的圖象上的點,EA⊥x軸于A,F(xiàn)C⊥y軸于C,∴S△AOE=S△COF=×1=.∵AE=BE,∴S△BOE=S△AOE=,S△BOC=S△AOB=1.∴S△BOF=S△BOC﹣S△COF=1﹣=.∴F是BC的中點.∴S△OEF=S矩形AOCB﹣S△AOE﹣S△COF﹣S△BEF=6﹣﹣﹣×=.三、解答題(共7小題,滿分69分)18、(2)y=x2﹣4x+3;(2)①2<x3<4,②m的值為或2.【解析】

(2)由直線y=﹣x+3分別與x軸、y交于點B、C求得點B、C的坐標,再代入y=x2+bx+c求得b、c的值,即可求得拋物線的解析式;(2)①先求得拋物線的頂點坐標為D(2,﹣2),當直線l2經過點D時求得m=﹣2;當直線l2經過點C時求得m=3,再由x2>x2>2,可得﹣2<y3<3,即可﹣2<﹣x3+3<3,所以2<x3<4;②分當直線l2在x軸的下方時,點Q在點P、N之間和當直線l2在x軸的上方時,點N在點P、Q之間兩種情況求m的值即可.【詳解】(2)在y=﹣x+3中,令x=2,則y=3;令y=2,則x=3;得B(3,2),C(2,3),將點B(3,2),C(2,3)的坐標代入y=x2+bx+c得:,解得∴y=x2﹣4x+3;(2)∵直線l2平行于x軸,∴y2=y2=y3=m,①如圖①,y=x2﹣4x+3=(x﹣2)2﹣2,∴頂點為D(2,﹣2),當直線l2經過點D時,m=﹣2;當直線l2經過點C時,m=3∵x2>x2>2,∴﹣2<y3<3,即﹣2<﹣x3+3<3,得2<x3<4,②如圖①,當直線l2在x軸的下方時,點Q在點P、N之間,若三個點P、Q、N中恰好有一點是其他兩點所連線段的中點,則得PQ=QN.∵x2>x2>2,∴x3﹣x2=x2﹣x2,即x3=2x2﹣x2,∵l2∥x軸,即PQ∥x軸,∴點P、Q關于拋物線的對稱軸l2對稱,又拋物線的對稱軸l2為x=2,∴2﹣x2=x2﹣2,即x2=4﹣x2,∴x3=3x2﹣4,將點Q(x2,y2)的坐標代入y=x2﹣4x+3得y2=x22﹣4x2+3,又y2=y3=﹣x3+3∴x22﹣4x2+3=﹣x3+3,∴x22﹣4x2=﹣(3x2﹣4)即x22﹣x2﹣4=2,解得x2=,(負值已舍去),∴m=()2﹣4×+3=如圖②,當直線l2在x軸的上方時,點N在點P、Q之間,若三個點P、Q、N中恰好有一點是其他兩點所連線段的中點,則得PN=NQ.由上可得點P、Q關于直線l2對稱,∴點N在拋物線的對稱軸l2:x=2,又點N在直線y=﹣x+3上,∴y3=﹣2+3=2,即m=2.故m的值為或2.【點睛】本題是二次函數(shù)綜合題,本題為二次函數(shù)的綜合應用,涉及待定系數(shù)法、函數(shù)圖象的交點、線段的中點及分類討論思想等知識.在(2)中注意待定系數(shù)法的應用;在(2)①注意利用數(shù)形結合思想;在(2)②注意分情況討論.本題考查知識點較多,綜合性較強,難度較大.19、B、C兩地的距離大約是6千米.【解析】

過B作BD⊥AC于點D,在直角△ABD中利用三角函數(shù)求得BD的長,然后在直角△BCD中利用三角函數(shù)求得BC的長.【詳解】解:過B作于點D.在中,千米,中,,千米,千米.答:B、C兩地的距離大約是6千米.【點睛】此題考查了方向角問題.此題難度適中,解此題的關鍵是將方向角問題轉化為解直角三角形的知識,利用三角函數(shù)的知識求解.20、2x-40.【解析】

原式利用多項式乘以多項式法則計算,去括號合并即可.【詳解】解:原式=x2-6x+7x-42-x2-x+2x+2=2x-40.【點睛】此題考查了整式的混合運算,熟練掌握運算法則是解本題的關鍵.21、(1)見解析;(1)4【解析】

(1)根據平行四邊形的判定定理首先推知四邊形DBEC為平行四邊形,然后由直角三角形斜邊上的中線等于斜邊的一半得到其鄰邊相等:CD=BD,得證;(1)由三角形中位線定理和勾股定理求得AB邊的長度,然后根據菱形的性質和三角形的面積公式進行解答.【詳解】(1)證明:∵CE∥DB,BE∥DC,∴四邊形DBEC為平行四邊形.又∵Rt△ABC中,∠ABC=90°,點D是AC的中點,∴CD=BD=AC,∴平行四邊形DBEC是菱形;(1)∵點D,F(xiàn)分別是AC,AB的中點,AD=3,DF=1,∴DF是△ABC的中位線,AC=1AD=6,S△BCD=S△ABC∴BC=1DF=1.又∵∠ABC=90°,∴AB===4.∵平行四邊形DBEC是菱形,∴S四邊形DBEC=1S△BCD=S△ABC=AB?BC=×4×1=4.點睛:本題考查了菱形的判定與性質,直角三角形斜邊上的中線等于斜邊的一半,三角形中位線定理.由點D是AC的中點,得到CD=BD是解答(1)的關鍵,由菱形的性質和三角形的面積公式得到S四邊形DBEC=S△ABC是解(1)的關鍵.22、見解析【解析】

根據題意:一邊為x米,面積為4,則另一邊為米,籬笆長為y=2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論