陜西省西安市高新一中學(xué)2021-2022學(xué)年中考數(shù)學(xué)押題試卷含解析_第1頁
陜西省西安市高新一中學(xué)2021-2022學(xué)年中考數(shù)學(xué)押題試卷含解析_第2頁
陜西省西安市高新一中學(xué)2021-2022學(xué)年中考數(shù)學(xué)押題試卷含解析_第3頁
陜西省西安市高新一中學(xué)2021-2022學(xué)年中考數(shù)學(xué)押題試卷含解析_第4頁
陜西省西安市高新一中學(xué)2021-2022學(xué)年中考數(shù)學(xué)押題試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

陜西省西安市高新一中學(xué)2021-2022學(xué)年中考數(shù)學(xué)押題試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.已知點(diǎn)為某封閉圖形邊界上一定點(diǎn),動(dòng)點(diǎn)從點(diǎn)出發(fā),沿其邊界順時(shí)針勻速運(yùn)動(dòng)一周.設(shè)點(diǎn)運(yùn)動(dòng)的時(shí)間為,線段的長為.表示與的函數(shù)關(guān)系的圖象大致如右圖所示,則該封閉圖形可能是()A. B. C. D.2.在中,,,,則的值是()A. B. C. D.3.如圖,熱氣球的探測(cè)器顯示,從熱氣球A看一棟樓頂部B的仰角為30°,看這棟樓底部C的俯角為60°,熱氣球A與樓的水平距離為120米,這棟樓的高度BC為()A.160米 B.(60+160) C.160米 D.360米4.圓錐的底面直徑是80cm,母線長90cm,則它的側(cè)面積是A. B. C. D.5.如圖,BC∥DE,若∠A=35°,∠E=60°,則∠C等于()A.60° B.35° C.25° D.20°6.如圖,平面直角坐標(biāo)系中,矩形ABCD的邊AB:BC=3:2,點(diǎn)A(3,0),B(0,6)分別在x軸,y軸上,反比例函數(shù)y=的圖象經(jīng)過點(diǎn)D,則k值為()A.﹣14 B.14 C.7 D.﹣77.我省2013年的快遞業(yè)務(wù)量為1.2億件,受益于電子商務(wù)發(fā)展和法治環(huán)境改善等多重因素,快遞業(yè)務(wù)迅猛發(fā)展,2012年增速位居全國第一.若2015年的快遞業(yè)務(wù)量達(dá)到2.5億件,設(shè)2012年與2013年這兩年的平均增長率為x,則下列方程正確的是()A.1.2(1+x)=2.5B.1.2(1+2x)=2.5C.1.2(1+x)2=2.5D.1.2(1+x)+1.2(1+x)2=2.58.實(shí)數(shù)a、b、c在數(shù)軸上的位置如圖所示,則代數(shù)式|c﹣a|﹣|a+b|的值等于()A.c+b B.b﹣c C.c﹣2a+b D.c﹣2a﹣b9.的相反數(shù)是()A. B.2 C. D.10.一個(gè)六邊形的六個(gè)內(nèi)角都是120°(如圖),連續(xù)四條邊的長依次為1,3,3,2,則這個(gè)六邊形的周長是()A.13 B.14 C.15 D.1611.如圖,三角形紙片ABC,AB=10cm,BC=7cm,AC=6cm,沿過點(diǎn)B的直線折疊這個(gè)三角形,使頂點(diǎn)C落在AB邊上的點(diǎn)E處,折痕為BD,則△AED的周長為()A.9cm B.13cm C.16cm D.10cm12.小蘇和小林在如圖①所示的跑道上進(jìn)行米折返跑.在整個(gè)過程中,跑步者距起跑線的距離(單位:)與跑步時(shí)間(單位:)的對(duì)應(yīng)關(guān)系如圖②所示.下列敘述正確的是().A.兩人從起跑線同時(shí)出發(fā),同時(shí)到達(dá)終點(diǎn)B.小蘇跑全程的平均速度大于小林跑全程的平均速度C.小蘇前跑過的路程大于小林前跑過的路程D.小林在跑最后的過程中,與小蘇相遇2次二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.請(qǐng)你算一算:如果每人每天節(jié)約1粒大米,全國13億人口一天就能節(jié)約_____千克大米!(結(jié)果用科學(xué)記數(shù)法表示,已知1克大米約52粒)14.如圖,在平面直角坐標(biāo)系xOy中,四邊形ODEF和四邊形ABCD都是正方形,點(diǎn)F在x軸的正半軸上,點(diǎn)C在邊DE上,反比例函數(shù)(k≠0,x>0)的圖象過點(diǎn)B,E.若AB=2,則k的值為________.15.分解因式:x3y﹣2x2y+xy=______.16.如圖,已知點(diǎn)A是一次函數(shù)y=x(x≥0)圖象上一點(diǎn),過點(diǎn)A作x軸的垂線l,B是l上一點(diǎn)(B在A上方),在AB的右側(cè)以AB為斜邊作等腰直角三角形ABC,反比例函數(shù)y=(x>0)的圖象過點(diǎn)B,C,若△OAB的面積為5,則△ABC的面積是________.17.現(xiàn)有八個(gè)大小相同的矩形,可拼成如圖1、2所示的圖形,在拼圖2時(shí),中間留下了一個(gè)邊長為2的小正方形,則每個(gè)小矩形的面積是_____.18.小明統(tǒng)計(jì)了家里3月份的電話通話清單,按通話時(shí)間畫出頻數(shù)分布直方圖(如圖所示),則通話時(shí)間不足10分鐘的通話次數(shù)的頻率是_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2),C(3,4)(1)請(qǐng)畫出將△ABC向左平移4個(gè)單位長度后得到的圖形△A1B1C1;(2)請(qǐng)畫出△ABC關(guān)于原點(diǎn)O成中心對(duì)稱的圖形△A2B2C2;(3)在x軸上找一點(diǎn)P,使PA+PB的值最小,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).20.(6分)如圖,在Rt△ABC中,∠ACB=90°,CD是斜邊AB上的高(1)△ACD與△ABC相似嗎?為什么?(2)AC2=AB?AD成立嗎?為什么?21.(6分)如圖,在Rt△ABC中,∠C=90°,以BC為直徑作⊙O交AB于點(diǎn)D,取AC的中點(diǎn)E,邊結(jié)DE,OE、OD,求證:DE是⊙O的切線.22.(8分)某新建火車站站前廣場(chǎng)需要綠化的面積為46000米2,施工隊(duì)在綠化了22000米2后,將每天的工作量增加為原來的1.5倍,結(jié)果提前4天完成了該項(xiàng)綠化工程.該項(xiàng)綠化工程原計(jì)劃每天完成多少米2?該項(xiàng)綠化工程中有一塊長為20米,寬為8米的矩形空地,計(jì)劃在其中修建兩塊相同的矩形綠地,它們的面積之和為56米2,兩塊綠地之間及周邊留有寬度相等的人行通道(如圖所示),問人行通道的寬度是多少米?23.(8分)如圖1,已知拋物線y=﹣x2+x+與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,點(diǎn)D是點(diǎn)C關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn),連接CD,過點(diǎn)D作DH⊥x軸于點(diǎn)H,過點(diǎn)A作AE⊥AC交DH的延長線于點(diǎn)E.(1)求線段DE的長度;(2)如圖2,試在線段AE上找一點(diǎn)F,在線段DE上找一點(diǎn)P,且點(diǎn)M為直線PF上方拋物線上的一點(diǎn),求當(dāng)△CPF的周長最小時(shí),△MPF面積的最大值是多少;(3)在(2)問的條件下,將得到的△CFP沿直線AE平移得到△C′F′P′,將△C′F′P′沿C′P′翻折得到△C′P′F″,記在平移過稱中,直線F′P′與x軸交于點(diǎn)K,則是否存在這樣的點(diǎn)K,使得△F′F″K為等腰三角形?若存在求出OK的值;若不存在,說明理由.24.(10分)如圖,已知在梯形ABCD中,,P是線段BC上一點(diǎn),以P為圓心,PA為半徑的與射線AD的另一個(gè)交點(diǎn)為Q,射線PQ與射線CD相交于點(diǎn)E,設(shè).(1)求證:;(2)如果點(diǎn)Q在線段AD上(與點(diǎn)A、D不重合),設(shè)的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;(3)如果與相似,求BP的長.25.(10分)我們知道中,如果,,那么當(dāng)時(shí),的面積最大為6;(1)若四邊形中,,且,直接寫出滿足什么位置關(guān)系時(shí)四邊形面積最大?并直接寫出最大面積.(2)已知四邊形中,,求為多少時(shí),四邊形面積最大?并求出最大面積是多少?26.(12分)如圖,已知AB為⊙O的直徑,AC是⊙O的弦,D是弧BC的中點(diǎn),過點(diǎn)D作⊙O的切線,分別交AC、AB的延長線于點(diǎn)E和點(diǎn)F,連接CD、BD.(1)求證:∠A=2∠BDF;(2)若AC=3,AB=5,求CE的長.27.(12分)某體育用品商場(chǎng)預(yù)測(cè)某品牌運(yùn)動(dòng)服能夠暢銷,就用32000元購進(jìn)了一批這種運(yùn)動(dòng)服,上市后很快脫銷,商場(chǎng)又用68000元購進(jìn)第二批這種運(yùn)動(dòng)服,所購數(shù)量是第一批購進(jìn)數(shù)量的2倍,但每套進(jìn)價(jià)多了10元.該商場(chǎng)兩次共購進(jìn)這種運(yùn)動(dòng)服多少套?如果這兩批運(yùn)動(dòng)服每套的售價(jià)相同,且全部售完后總利潤不低于20%,那么每套售價(jià)至少是多少元?

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、A【解析】

解:分析題中所給函數(shù)圖像,段,隨的增大而增大,長度與點(diǎn)的運(yùn)動(dòng)時(shí)間成正比.段,逐漸減小,到達(dá)最小值時(shí)又逐漸增大,排除、選項(xiàng),段,逐漸減小直至為,排除選項(xiàng).故選.【點(diǎn)睛】本題考查了動(dòng)點(diǎn)問題的函數(shù)圖象,函數(shù)圖象是典型的數(shù)形結(jié)合,圖象應(yīng)用信息廣泛,通過看圖獲取信息,不僅可以解決生活中的實(shí)際問題,還可以提高分析問題、解決問題的能力.用圖象解決問題時(shí),要理清圖象的含義即會(huì)識(shí)圖.2、D【解析】

首先根據(jù)勾股定理求得AC的長,然后利用正弦函數(shù)的定義即可求解.【詳解】∵∠C=90°,BC=1,AB=4,

∴,∴,故選:D.【點(diǎn)睛】本題考查了三角函數(shù)的定義,求銳角的三角函數(shù)值的方法:利用銳角三角函數(shù)的定義,轉(zhuǎn)化成直角三角形的邊長的比.3、C【解析】

過點(diǎn)A作AD⊥BC于點(diǎn)D.根據(jù)三角函數(shù)關(guān)系求出BD、CD的長,進(jìn)而可求出BC的長.【詳解】如圖所示,過點(diǎn)A作AD⊥BC于點(diǎn)D.在Rt△ABD中,∠BAD=30°,AD=120m,BD=AD?tan30°=120×=m;在Rt△ADC中,∠DAC=60°,CD=AD?tan60°=120×=m.∴BC=BD+DC=m.故選C.【點(diǎn)睛】本題主要考查三角函數(shù),解答本題的關(guān)鍵是熟練掌握三角函數(shù)的有關(guān)知識(shí),并牢記特殊角的三角函數(shù)值.4、D【解析】圓錐的側(cè)面積=×80π×90=3600π(cm2).故選D.5、C【解析】

先根據(jù)平行線的性質(zhì)得出∠CBE=∠E=60°,再根據(jù)三角形的外角性質(zhì)求出∠C的度數(shù)即可.【詳解】∵BC∥DE,∴∠CBE=∠E=60°,∵∠A=35°,∠C+∠A=∠CBE,∴∠C=∠CBE﹣∠C=60°﹣35°=25°,故選C.【點(diǎn)睛】本題考查了平行線的性質(zhì)、三角形外角的性質(zhì),熟練掌握三角形外角的性質(zhì)是解題的關(guān)鍵.6、B【解析】過點(diǎn)D作DF⊥x軸于點(diǎn)F,則∠AOB=∠DFA=90°,∴∠OAB+∠ABO=90°,∵四邊形ABCD是矩形,∴∠BAD=90°,AD=BC,∴∠OAB+∠DAF=90°,∴∠ABO=∠DAF,∴△AOB∽△DFA,∴OA:DF=OB:AF=AB:AD,∵AB:BC=3:2,點(diǎn)A(3,0),B(0,6),∴AB:AD=3:2,OA=3,OB=6,∴DF=2,AF=4,∴OF=OA+AF=7,∴點(diǎn)D的坐標(biāo)為:(7,2),∴k,故選B.7、C【解析】試題解析:設(shè)2015年與2016年這兩年的平均增長率為x,由題意得:1.2(1+x)2=2.5,故選C.8、A【解析】

根據(jù)數(shù)軸得到b<a<0<c,根據(jù)有理數(shù)的加法法則,減法法則得到c-a>0,a+b<0,根據(jù)絕對(duì)值的性質(zhì)化簡計(jì)算.【詳解】由數(shù)軸可知,b<a<0<c,∴c-a>0,a+b<0,則|c-a|-|a+b|=c-a+a+b=c+b,故選A.【點(diǎn)睛】本題考查的是實(shí)數(shù)與數(shù)軸,絕對(duì)值的性質(zhì),能夠根據(jù)數(shù)軸比較實(shí)數(shù)的大小,掌握絕對(duì)值的性質(zhì)是解題的關(guān)鍵.9、D【解析】

因?yàn)?+=0,所以-的相反數(shù)是.故選D.10、C【解析】

解:如圖所示,分別作直線AB、CD、EF的延長線和反向延長線使它們交于點(diǎn)G、H、I.因?yàn)榱呅蜛BCDEF的六個(gè)角都是120°,所以六邊形ABCDEF的每一個(gè)外角的度數(shù)都是60°.所以都是等邊三角形.所以所以六邊形的周長為3+1+4+2+2+3=15;故選C.11、A【解析】試題分析:由折疊的性質(zhì)知,CD=DE,BC=BE.易求AE及△AED的周長.解:由折疊的性質(zhì)知,CD=DE,BC=BE=7cm.∵AB=10cm,BC=7cm,∴AE=AB﹣BE=3cm.△AED的周長=AD+DE+AE=AC+AE=6+3=9(cm).故選A.點(diǎn)評(píng):本題利用了折疊的性質(zhì):折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,根據(jù)軸對(duì)稱的性質(zhì),折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和對(duì)應(yīng)角相等.12、D【解析】

A.由圖可看出小林先到終點(diǎn),A錯(cuò)誤;B.全程路程一樣,小林用時(shí)短,所以小林的平均速度大于小蘇的平均速度,B錯(cuò)誤;C.第15秒時(shí),小蘇距離起點(diǎn)較遠(yuǎn),兩人都在返回起點(diǎn)的過程中,據(jù)此可判斷小林跑的路程大于小蘇跑的路程,C錯(cuò)誤;D.由圖知兩條線的交點(diǎn)是兩人相遇的點(diǎn),所以是相遇了兩次,正確.故選D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、2.5×1【解析】

先根據(jù)有理數(shù)的除法求出節(jié)約大米的千克數(shù),再用科學(xué)計(jì)數(shù)法表示,對(duì)于一個(gè)絕對(duì)值較大的數(shù),用科學(xué)記數(shù)法寫成的形式,其中,n是比原整數(shù)位數(shù)少1的數(shù).【詳解】1300000000÷52÷1000(千克)=25000(千克)=2.5×1(千克).故答案為2.5×1.【點(diǎn)睛】本題考查了有理數(shù)的除法和正整數(shù)指數(shù)科學(xué)計(jì)數(shù)法,根據(jù)科學(xué)計(jì)算法的要求,正確確定出a和n的值是解答本題的關(guān)鍵.14、【解析】

解:設(shè)E(x,x),∴B(2,x+2),∵反比例函數(shù)(k≠0,x>0)的圖象過點(diǎn)B.E.∴x2=2(x+2),,(舍去),,故答案為15、xy(x﹣1)1【解析】

原式提取公因式,再利用完全平方公式分解即可.【詳解】解:原式=xy(x1-1x+1)=xy(x-1)1.故答案為:xy(x-1)1【點(diǎn)睛】此題考查了提公因式法與公式法的綜合運(yùn)用,熟練掌握因式分解的方法是解本題的關(guān)鍵.16、【解析】

如圖,過C作CD⊥y軸于D,交AB于E.設(shè)AB=2a,則BE=AE=CE=a,再設(shè)A(x,x),則B(x,x+2a)、C(x+a,x+a),再由B、C在反比例函數(shù)的圖象上可得x(x+2a)=(x+a)(x+a),解得x=3a,由△OAB的面積為5求得ax=5,即可得a2=,根據(jù)S△ABC=AB?CE即可求解.【詳解】如圖,過C作CD⊥y軸于D,交AB于E.∵AB⊥x軸,∴CD⊥AB,∵△ABC是等腰直角三角形,∴BE=AE=CE,設(shè)AB=2a,則BE=AE=CE=a,設(shè)A(x,x),則B(x,x+2a),C(x+a,x+a),∵B、C在反比例函數(shù)的圖象上,∴x(x+2a)=(x+a)(x+a),解得x=3a,∵S△OAB=AB?DE=?2a?x=5,∴ax=5,∴3a2=5,∴a2=,∴S△ABC=AB?CE=?2a?a=a2=.故答案為:.【點(diǎn)睛】本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征、等腰直角三角形的性質(zhì)、三角形面積,熟練掌握反比例函數(shù)上的點(diǎn)符合反比例函數(shù)的關(guān)系式是關(guān)鍵.17、1.【解析】

設(shè)小矩形的長為x,寬為y,則由圖1可得5y=3x;由圖2可知2y-x=2.【詳解】解:設(shè)小矩形的長為x,寬為y,則可列出方程組,,解得,則小矩形的面積為6×10=1.【點(diǎn)睛】本題考查了二元一次方程組的應(yīng)用.18、0.7【解析】

用通話時(shí)間不足10分鐘的通話次數(shù)除以通話的總次數(shù)即可得.【詳解】由圖可知:小明家3月份通話總次數(shù)為20+15+10+5=50(次);其中通話不足10分鐘的次數(shù)為20+15=35(次),∴通話時(shí)間不足10分鐘的通話次數(shù)的頻率是35÷50=0.7.故答案為0.7.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)詳見解析;(2)詳見解析;(3)圖見解析,點(diǎn)P坐標(biāo)為(2,0).【解析】

(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)A、B、C平移后的對(duì)應(yīng)點(diǎn)的位置,然后順次連接即可;(2))找出點(diǎn)A、B、C關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)的位置,然后順次連接即可;(3)找出A的對(duì)稱點(diǎn)A′,連接BA′,與x軸交點(diǎn)即為P.【詳解】(1)如圖1所示,△A1B1C1,即為所求:(2)如圖2所示,△A2B2C2,即為所求:(3)找出A的對(duì)稱點(diǎn)A′(1,﹣1),連接BA′,與x軸交點(diǎn)即為P;如圖3所示,點(diǎn)P即為所求,點(diǎn)P坐標(biāo)為(2,0).【點(diǎn)睛】本題考查作圖-旋轉(zhuǎn)變換,平移變換,軸對(duì)稱最短問題等知識(shí),得出對(duì)應(yīng)點(diǎn)位置是解題關(guān)鍵.20、(1)△ACD與△ABC相似;(2)AC2=AB?AD成立.【解析】

(1)求出∠ADC=∠ACB=90°,根據(jù)相似三角形的判定推出即可;(2)根據(jù)相似三角形的性質(zhì)得出比例式,再進(jìn)行變形即可.【詳解】解:(1)△ACD與△ABC相似,理由是:∵在Rt△ABC中,∠ACB=90°,CD是斜邊AB上的高,∴∠ADC=∠ACB=90°,∵∠A=∠A,∴△ACD∽∠ABC;(2)AC2=AB?AD成立,理由是:∵△ACD∽∠ABC,∴=,∴AC2=AB?AD.【點(diǎn)睛】本題考查了相似三角形的性質(zhì)和判定,能根據(jù)相似三角形的判定定理推出△ACD∽△ABC是解此題的關(guān)鍵.21、詳見解析.【解析】試題分析:由三角形的中位線得出OE∥AB,進(jìn)一步利用平行線的性質(zhì)和等腰三角形性質(zhì),找出△OCE和△ODE相等的線段和角,證得全等得出答案即可.試題解析:證明:∵點(diǎn)E為AC的中點(diǎn),OC=OB,∴OE∥AB,∴∠EOC=∠B,∠EOD=∠ODB.又∵∠ODB=∠B,∴∠EOC=∠EOD.在△OCE和△ODE中,∵OC=OD,∠EOC=∠EOD,OE=OE,∴△OCE≌△ODE(SAS),∴∠EDO=∠ECO=90°,∴DE⊥OD,∴DE是⊙O的切線.點(diǎn)睛:此題考查切線的判定.證明的關(guān)鍵是得到△OCE≌△ODE.22、(1)2000;(2)2米【解析】

(1)設(shè)未知數(shù),根據(jù)題目中的的量關(guān)系列出方程;(2)可以通過平移,也可以通過面積法,列出方程【詳解】解:(1)設(shè)該項(xiàng)綠化工程原計(jì)劃每天完成x米2,根據(jù)題意得:﹣=4解得:x=2000,經(jīng)檢驗(yàn),x=2000是原方程的解;答:該綠化項(xiàng)目原計(jì)劃每天完成2000平方米;(2)設(shè)人行道的寬度為x米,根據(jù)題意得,(20﹣3x)(8﹣2x)=56解得:x=2或x=(不合題意,舍去).答:人行道的寬為2米.23、(1)2;(2);(3)見解析.【解析】分析:(1)根據(jù)解析式求得C的坐標(biāo),進(jìn)而求得D的坐標(biāo),即可求得DH的長度,令y=0,求得A,B的坐標(biāo),然后證得△ACO∽△EAH,根據(jù)對(duì)應(yīng)邊成比例求得EH的長,進(jìn)繼而求得DE的長;(2)找點(diǎn)C關(guān)于DE的對(duì)稱點(diǎn)N(4,),找點(diǎn)C關(guān)于AE的對(duì)稱點(diǎn)G(-2,-),連接GN,交AE于點(diǎn)F,交DE于點(diǎn)P,即G、F、P、N四點(diǎn)共線時(shí),△CPF周長=CF+PF+CP=GF+PF+PN最小,根據(jù)點(diǎn)的坐標(biāo)求得直線GN的解析式:y=x-;直線AE的解析式:y=-x-,過點(diǎn)M作y軸的平行線交FH于點(diǎn)Q,設(shè)點(diǎn)M(m,-m2+m+),則Q(m,m-),根據(jù)S△MFP=S△MQF+S△MQP,得出S△MFP=-m2+m+,根據(jù)解析式即可求得,△MPF面積的最大值;(3)由(2)可知C(0,),F(xiàn)(0,),P(2,),求得CF=,CP=,進(jìn)而得出△CFP為等邊三角形,邊長為,翻折之后形成邊長為的菱形C′F′P′F″,且F′F″=4,然后分三種情況討論求得即可.本題解析:(1)對(duì)于拋物線y=﹣x2+x+,令x=0,得y=,即C(0,),D(2,),∴DH=,令y=0,即﹣x2+x+=0,得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),∵AE⊥AC,EH⊥AH,∴△ACO∽△EAH,∴=,即=,解得:EH=,則DE=2;(2)找點(diǎn)C關(guān)于DE的對(duì)稱點(diǎn)N(4,),找點(diǎn)C關(guān)于AE的對(duì)稱點(diǎn)G(﹣2,﹣),連接GN,交AE于點(diǎn)F,交DE于點(diǎn)P,即G、F、P、N四點(diǎn)共線時(shí),△CPF周長=CF+PF+CP=GF+PF+PN最小,直線GN的解析式:y=x﹣;直線AE的解析式:y=﹣x﹣,聯(lián)立得:F(0,﹣),P(2,),過點(diǎn)M作y軸的平行線交FH于點(diǎn)Q,設(shè)點(diǎn)M(m,﹣m2+m+),則Q(m,m﹣),(0<m<2);∴S△MFP=S△MQF+S△MQP=MQ×2=MQ=﹣m2+m+,∵對(duì)稱軸為:直線m=<2,開口向下,∴m=時(shí),△MPF面積有最大值:;(3)由(2)可知C(0,),F(xiàn)(0,),P(2,),∴CF=,CP==,∵OC=,OA=1,∴∠OCA=30°,∵FC=FG,∴∠OCA=∠FGA=30°,∴∠CFP=60°,∴△CFP為等邊三角形,邊長為,翻折之后形成邊長為的菱形C′F′P′F″,且F′F″=4,1)當(dāng)KF′=KF″時(shí),如圖3,點(diǎn)K在F′F″的垂直平分線上,所以K與B重合,坐標(biāo)為(3,0),∴OK=3;2)當(dāng)F′F″=F′K時(shí),如圖4,∴F′F″=F′K=4,∵FP的解析式為:y=x﹣,∴在平移過程中,F(xiàn)′K與x軸的夾角為30°,∵∠OAF=30°,∴F′K=F′A∴AK=4∴OK=4﹣1或者4+1;3)當(dāng)F″F′=F″K時(shí),如圖5,∵在平移過程中,F(xiàn)″F′始終與x軸夾角為60°,∵∠OAF=30°,∴∠AF′F″=90°,∵F″F′=F″K=4,∴AF″=8,∴AK=12,∴OK=1,綜上所述:OK=3,4﹣1,4+1或者1.點(diǎn)睛:本題是二次函數(shù)的綜合題,考查了二次函數(shù)的交點(diǎn)和待定系數(shù)法求二次函數(shù)的解析式以及最值問題,考查了三角形相似的判定與性質(zhì),等邊三角形的判定與性質(zhì),等腰三角形的性質(zhì)等,分類討論的思想是解題的關(guān)鍵.24、(1)見解析;(2);(3)當(dāng)或8時(shí),與相似.【解析】

(1)想辦法證明即可解決問題;(2)作A于M,于N.則四邊形AMPN是矩形.想辦法求出AQ、PN的長即可解決問題;(3)因?yàn)?,所以,又,推出,推出相似時(shí),與相似,分兩種情形討論即可解決問題;【詳解】(1)證明:四邊形ABCD是等腰梯形,,,,,,,.(2)解:作于M,于N.則四邊形是矩形.在中,,,,,,.(3)解:,,,相似時(shí),與相似,,當(dāng)時(shí),,此時(shí),當(dāng)時(shí),,此時(shí),綜上所述,當(dāng)PB=5或8時(shí),與△相似.【點(diǎn)睛】本題考查幾何綜合題、圓的有關(guān)性質(zhì)、等腰梯形的性質(zhì),銳角三角函數(shù)、相似三角形的判定和性質(zhì)、平行線的性質(zhì)等知識(shí),解題的關(guān)鍵是正確尋找相似三角形解決問題,學(xué)會(huì)添加常用輔助線,構(gòu)造直角三角形和特殊四邊形解決問題,屬于中考?jí)狠S題.25、(1)當(dāng),時(shí)有最大值1;(2)當(dāng)時(shí),面積有最大值32.【解析】

(1)由題意當(dāng)AD∥BC,BD⊥AD時(shí),四邊形ABCD的面積最大,由此即可解決問題.

(2)設(shè)BD=x,由題意:當(dāng)AD∥BC,BD⊥AD時(shí),四邊形ABCD的面積最大,構(gòu)建二次函數(shù),利用二次函數(shù)的性質(zhì)即可解決問題.【詳解】(1)由題意當(dāng)AD∥BC,BD⊥AD時(shí),四邊形ABCD的面積最大,

最大面積為×6×(16-6)=1.故當(dāng),時(shí)有最大值1;(2)當(dāng)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論