山東省濰坊諸城市第七中學2023-2024學年中考五模數學試題含解析_第1頁
山東省濰坊諸城市第七中學2023-2024學年中考五模數學試題含解析_第2頁
山東省濰坊諸城市第七中學2023-2024學年中考五模數學試題含解析_第3頁
山東省濰坊諸城市第七中學2023-2024學年中考五模數學試題含解析_第4頁
山東省濰坊諸城市第七中學2023-2024學年中考五模數學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省濰坊諸城市第七中學2023-2024學年中考五模數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.在Rt△ABC中,∠C=90°,如果AC=2,cosA=,那么AB的長是()A.3 B. C. D.2.下列計算正確的是()A.(a2)3=a6 B.a2?a3=a6 C.a3+a4=a7 D.(ab)3=ab33.已知一元二次方程ax2+ax﹣4=0有一個根是﹣2,則a值是()A.﹣2 B. C.2 D.44.如圖,直線a∥b,一塊含60°角的直角三角板ABC(∠A=60°)按如圖所示放置.若∠1=55°,則∠2的度數為()A.105° B.110° C.115° D.120°5.若一次函數的圖象經過第一、二、四象限,則下列不等式一定成立的是()A. B. C. D.6.小亮家與姥姥家相距24km,小亮8:00從家出發(fā),騎自行車去姥姥家.媽媽8:30從家出發(fā),乘車沿相同路線去姥姥家.在同一直角坐標系中,小亮和媽媽的行進路程s(km)與時間t(h)的函數圖象如圖所示.根據圖象得出下列結論,其中錯誤的是()A.小亮騎自行車的平均速度是12km/hB.媽媽比小亮提前0.5h到達姥姥家C.媽媽在距家12km處追上小亮D.9:30媽媽追上小亮7.一個多邊形的每個內角都等于120°,則這個多邊形的邊數為()A.4 B.5 C.6 D.78.如圖,數軸上的A、B、C、D四點中,與數﹣表示的點最接近的是()A.點A B.點B C.點C D.點D9.“五一”期間,某市共接待海內外游客約567000人次,將567000用科學記數法表示為()A.567×103B.56.7×104C.5.67×105D.0.567×10610.小宇媽媽上午在某水果超市買了16.5元錢的葡萄,晚上散步經過該水果超市時,發(fā)現同一批葡萄的價格降低了25%,小宇媽媽又買了16.5元錢的葡萄,結果恰好比早上多了0.5千克.若設早上葡萄的價格是x元/千克,則可列方程()A. B.C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.在一個不透明的袋子里裝有除顏色外其它均相同的紅、藍小球各一個,每次從袋中摸出一個小球記下顏色后再放回,摸球三次,“僅有一次摸到紅球”的概率是_____.12.若點(a,b)在一次函數y=2x-3的圖象上,則代數式4a-2b-3的值是__________13.關于的分式方程的解為負數,則的取值范圍是_________.14.數據5,6,7,4,3的方差是.15.如圖,已知AB∥CD,F為CD上一點,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度數為整數,則∠C的度數為_____.16.不等式組的解集為____.三、解答題(共8題,共72分)17.(8分)某校數學綜合實踐小組的同學以“綠色出行”為主題,把某小區(qū)的居民對共享單車的了解和使用情況進行了問卷調查.在這次調查中,發(fā)現有20人對于共享單車不了解,使用共享單車的居民每天騎行路程不超過8千米,并將調查結果制作成統(tǒng)計圖,如下圖所示:本次調查人數共人,使用過共享單車的有人;請將條形統(tǒng)計圖補充完整;如果這個小區(qū)大約有3000名居民,請估算出每天的騎行路程在2~4千米的有多少人?18.(8分)問題探究(1)如圖1,△ABC和△DEC均為等腰直角三角形,且∠BAC=∠CDE=90°,AB=AC=3,DE=CD=1,連接AD、BE,求的值;(2)如圖2,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=4,過點A作AM⊥AB,點P是射線AM上一動點,連接CP,做CQ⊥CP交線段AB于點Q,連接PQ,求PQ的最小值;(3)李師傅準備加工一個四邊形零件,如圖3,這個零件的示意圖為四邊形ABCD,要求BC=4cm,∠BAD=135°,∠ADC=90°,AD=CD,請你幫李師傅求出這個零件的對角線BD的最大值.圖319.(8分)如圖是某旅游景點的一處臺階,其中臺階坡面AB和BC的長均為6m,AB部分的坡角∠BAD為45°,BC部分的坡角∠CBE為30°,其中BD⊥AD,CE⊥BE,垂足為D,E.現在要將此臺階改造為直接從A至C的臺階,如果改造后每層臺階的高為22cm,那么改造后的臺階有多少層?(最后一個臺階的高超過15cm且不足22cm時,按一個臺階計算.可能用到的數據:≈1.414,≈1.732)20.(8分)為了貫徹“減負增效”精神,掌握九年級600名學生每天的自主學習情況,某校學生會隨機抽查了九年級的部分學生,并調查他們每天自主學習的時間.根據調查結果,制作了兩幅不完整的統(tǒng)計圖(圖1,圖2),請根據統(tǒng)計圖中的信息回答下列問題:(1)本次調查的學生人數是人;(2)圖2中α是度,并將圖1條形統(tǒng)計圖補充完整;(3)請估算該校九年級學生自主學習時間不少于1.5小時有人;(4)老師想從學習效果較好的4位同學(分別記為A、B、C、D,其中A為小亮)隨機選擇兩位進行學習經驗交流,用列表法或樹狀圖的方法求出選中小亮A的概率.21.(8分)“垃圾不落地,城市更美麗”.某中學為了了解七年級學生對這一倡議的落實情況,學校安排政教處在七年級學生中隨機抽取了部分學生,并針對學生“是否隨手丟垃圾”這一情況進行了問卷調查,統(tǒng)計結果為:A為從不隨手丟垃圾;B為偶爾隨手丟垃圾;C為經常隨手丟垃圾三項.要求每位被調查的學生必須從以上三項中選一項且只能選一項.現將調查結果繪制成以下來不辜負不完整的統(tǒng)計圖.請你根據以上信息,解答下列問題:(1)補全上面的條形統(tǒng)計圖和扇形統(tǒng)計圖;(2)所抽取學生“是否隨手丟垃圾”情況的眾數是;(3)若該校七年級共有1500名學生,請你估計該年級學生中“經常隨手丟垃圾”的學生約有多少人?談談你的看法?22.(10分)如圖,在平面直角坐標系中,函數的圖象與直線交于點A(3,m).求k、m的值;已知點P(n,n)(n>0),過點P作平行于軸的直線,交直線y=x-2于點M,過點P作平行于y軸的直線,交函數的圖象于點N.①當n=1時,判斷線段PM與PN的數量關系,并說明理由;②若PN≥PM,結合函數的圖象,直接寫出n的取值范圍.23.(12分)如圖,在平面直角坐標系中,矩形OCDE的三個頂點分別是C(3,0),D(3,4),E(0,4).點A在DE上,以A為頂點的拋物線過點C,且對稱軸x=1交x軸于點B.連接EC,AC.點P,Q為動點,設運動時間為t秒.(1)求拋物線的解析式.(2)在圖①中,若點P在線段OC上從點O向點C以1個單位/秒的速度運動,同時,點Q在線段CE上從點C向點E以2個單位/秒的速度運動,當一個點到達終點時,另一個點隨之停止運動.當t為何值時,△PCQ為直角三角形?(3)在圖②中,若點P在對稱軸上從點A開始向點B以1個單位/秒的速度運動,過點P做PF⊥AB,交AC于點F,過點F作FG⊥AD于點G,交拋物線于點Q,連接AQ,CQ.當t為何值時,△ACQ的面積最大?最大值是多少?24.已知:如圖,AB=AE,∠1=∠2,∠B=∠E.求證:BC=ED.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】根據銳角三角函數的性質,可知cosA==,然后根據AC=2,解方程可求得AB=3.故選A.點睛:此題主要考查了解直角三角形,解題關鍵是明確直角三角形中,余弦值cosA=,然后帶入數值即可求解.2、A【解析】分析:根據冪的乘方、同底數冪的乘法、積的乘方公式即可得出答案.詳解:A、冪的乘方法則,底數不變,指數相乘,原式計算正確;B、同底數冪的乘法,底數不變,指數相加,原式=,故錯誤;C、不是同類項,無法進行加法計算;D、積的乘方等于乘方的積,原式=,計算錯誤;故選A.點睛:本題主要考查的是冪的乘方、同底數冪的乘法、積的乘方計算法則,屬于基礎題型.理解各種計算法則是解題的關鍵.3、C【解析】分析:將x=-2代入方程即可求出a的值.詳解:將x=-2代入可得:4a-2a-4=0,解得:a=2,故選C.點睛:本題主要考查的是解一元一次方程,屬于基礎題型.解方程的一般方法的掌握是解題的關鍵.4、C【解析】

如圖,首先證明∠AMO=∠2,然后運用對頂角的性質求出∠ANM=55°;借助三角形外角的性質求出∠AMO即可解決問題.【詳解】如圖,對圖形進行點標注.∵直線a∥b,∴∠AMO=∠2;∵∠ANM=∠1,而∠1=55°,∴∠ANM=55°,∴∠2=∠AMO=∠A+∠ANM=60°+55°=115°,故選C.【點睛】本題考查了平行線的性質,三角形外角的性質,熟練掌握和靈活運用相關知識是解題的關鍵.5、D【解析】∵一次函數y=ax+b的圖象經過第一、二、四象限,∴a<0,b>0,∴a+b不一定大于0,故A錯誤,a?b<0,故B錯誤,ab<0,故C錯誤,<0,故D正確.故選D.6、D【解析】

根據函數圖象可知根據函數圖象小亮去姥姥家所用時間為10﹣8=2小時,進而得到小亮騎自行車的平均速度,對應函數圖象,得到媽媽到姥姥家所用的時間,根據交點坐標確定媽媽追上小亮所用時間,即可解答.【詳解】解:A、根據函數圖象小亮去姥姥家所用時間為10﹣8=2小時,∴小亮騎自行車的平均速度為:24÷2=12(km/h),故正確;B、由圖象可得,媽媽到姥姥家對應的時間t=9.5,小亮到姥姥家對應的時間t=10,10﹣9.5=0.5(小時),∴媽媽比小亮提前0.5小時到達姥姥家,故正確;C、由圖象可知,當t=9時,媽媽追上小亮,此時小亮離家的時間為9﹣8=1小時,∴小亮走的路程為:1×12=12km,∴媽媽在距家12km出追上小亮,故正確;D、由圖象可知,當t=9時,媽媽追上小亮,故錯誤;故選D.【點睛】本題考查函數圖像的應用,從圖像中讀取關鍵信息是解題的關鍵.7、C【解析】試題解析:∵多邊形的每一個內角都等于120°,∴多邊形的每一個外角都等于180°-120°=10°,∴邊數n=310°÷10°=1.故選C.考點:多邊形內角與外角.8、B【解析】

,計算-1.732與-3,-2,-1的差的絕對值,確定絕對值最小即可.【詳解】,,,,因為0.268<0.732<1.268,所以表示的點與點B最接近,故選B.9、C【解析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值≥1時,n是非負數;當原數的絕對值<1時,n是負數.【詳解】567000=5.67×105,【點睛】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.10、B【解析】分析:根據數量=,可知第一次買了千克,第二次買了,根據第二次恰好比第一次多買了0.5千克列方程即可.詳解:設早上葡萄的價格是x元/千克,由題意得,.故選B.點睛:本題考查了分式方程的實際應用,解題的關鍵是讀懂題意,找出列方程所用到的等量關系.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】摸三次有可能有:紅紅紅、紅紅藍、紅藍紅、紅藍藍、藍紅紅、藍紅藍、藍藍紅、藍藍藍共計8種可能,其中僅有一個紅壞的有:紅藍藍、藍紅藍、藍藍紅共計3種,所以“僅有一次摸到紅球”的概率是.故答案是:.12、1【解析】

根據題意,將點(a,b)代入函數解析式即可求得2a-b的值,變形即可求得所求式子的值.【詳解】∵點(a,b)在一次函數y=2x-1的圖象上,∴b=2a-1,∴2a-b=1,∴4a-2b=6,∴4a-2b-1=6-1=1,故答案為:1.【點睛】本題考查一次函數圖象上點的坐標特征,解答本題的關鍵是明確題意,利用一次函數的性質解答.13、【解析】

分式方程去分母轉化為整式方程,由分式方程的解為負數,求出a的范圍即可【詳解】分式方程去分母得:2x+a=x+1解得:x=1-a,由分式方程解為負數,得到1-a<0,且1-a≠-1解得:a>1且a≠2,故答案為:a>1且a≠2【點睛】此題考查分式方程的解,解題關鍵在于求出x的值再進行分析14、1【解析】

先求平均數,再根據方差的公式S1=[(x1-)1+(x1-)1+…+(xn-)1]計算即可.【詳解】解:∵=(5+6+7+4+3)÷5=5,∴數據的方差S1=×[(5-5)1+(6-5)1+(7-5)1+(4-5)1+(3-5)1]=1.故答案為:1.考點:方差.15、36°或37°.【解析】分析:先過E作EG∥AB,根據平行線的性質可得∠AEF=∠BAE+∠DFE,再設∠CEF=x,則∠AEC=2x,根據6°<∠BAE<15°,即可得到6°<3x-60°<15°,解得22°<x<25°,進而得到∠C的度數.詳解:如圖,過E作EG∥AB,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,設∠CEF=x,則∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x-60°,又∵6°<∠BAE<15°,∴6°<3x-60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角,∠C的度數為整數,∴∠C=60°-23°=37°或∠C=60°-24°=36°,故答案為:36°或37°.點睛:本題主要考查了平行線的性質以及三角形外角性質的運用,解決問題的關鍵是作平行線,解題時注意:兩直線平行,內錯角相等.16、x>1【解析】

分別解出兩不等式的解集再求其公共解.【詳解】由①得:x>1

由②得:x>∴不等式組的解集是x>1.【點睛】求不等式的解集須遵循以下原則:同大取較大,同小取較?。〈蟠笮≈虚g找,大大小小解不了.三、解答題(共8題,共72分)17、(1)200,90(2)圖形見解析(3)750人【解析】試題分析:(1)用對于共享單車不了解的人數20除以對于共享單車不了解的人數所占得百分比即可得本次調查人數;用總人數乘以使用過共享單車人數所占的百分比即可得使用過共享單車的人數;(2)用使用過共享單車的總人數減去0~2,4~6,6~8的人數,即可得2~4的人數,再圖上畫出即可;(3)用3000乘以騎行路程在2~4千米的人數所占的百分比即可得每天的騎行路程在2~4千米的人數.試題解析:(1)20÷10%=200,200×(1-45%-10%)=90;(2)90-25-10-5=50,補全條形統(tǒng)計圖(3)=750(人)答:每天的騎行路程在2~4千米的大約750人18、(1);(2);(3)+.【解析】

(1)由等腰直角三角形的性質可得BC=3,CE=,∠ACB=∠DCE=45°,可證△ACD∽△BCE,可得=;(2)由題意可證點A,點Q,點C,點P四點共圓,可得∠QAC=∠QPC,可證△ABC∽△PQC,可得,可得當QC⊥AB時,PQ的值最小,即可求PQ的最小值;(3)作∠DCE=∠ACB,交射線DA于點E,取CE中點F,連接AC,BE,DF,BF,由題意可證△ABC∽△DEC,可得,且∠BCE=∠ACD,可證△BCE∽△ACD,可得∠BEC=∠ADC=90°,由勾股定理可求CE,DF,BF的長,由三角形三邊關系可求BD的最大值.【詳解】(1)∵∠BAC=∠CDE=90°,AB=AC=3,DE=CD=1,∴BC=3,CE=,∠ACB=∠DCE=45°,∴∠BCE=∠ACD,∵==,=,∴=,∠BCE=∠ACD,∴△ACD∽△BCE,∴=;(2)∵∠ACB=90°,∠B=30°,BC=4,∴AC=,AB=2AC=,∵∠QAP=∠QCP=90°,∴點A,點Q,點C,點P四點共圓,∴∠QAC=∠QPC,且∠ACB=∠QCP=90°,∴△ABC∽△PQC,∴,∴PQ=×QC=QC,∴當QC的長度最小時,PQ的長度最小,即當QC⊥AB時,PQ的值最小,此時QC=2,PQ的最小值為;(3)如圖,作∠DCE=∠ACB,交射線DA于點E,取CE中點F,連接AC,BE,DF,BF,,∵∠ADC=90°,AD=CD,∴∠CAD=45°,∠BAC=∠BAD-∠CAD=90°,∴△ABC∽△DEC,∴,∵∠DCE=∠ACB,∴∠BCE=∠ACD,∴△BCE∽△ACD,∴∠BEC=∠ADC=90°,∴CE=BC=2,∵點F是EC中點,∴DF=EF=CE=,∴BF==,∴BD≤DF+BF=+【點睛】本題是相似綜合題,考查了等腰直角三角形的性質,勾股定理,相似三角形的判定和性質等知識,添加恰當輔助線構造相似三角形是本題的關鍵.19、33層.【解析】

根據含30度的直角三角形三邊的關系和等腰直角三角形的性質得到BD和CE的長,二者的和乘以100后除以20即可確定臺階的數.【詳解】解:在Rt△ABD中,BD=AB?sin45°=3m,在Rt△BEC中,EC=BC=3m,∴BD+CE=3+3,∵改造后每層臺階的高為22cm,∴改造后的臺階有(3+3)×100÷22≈33(個)答:改造后的臺階有33個.【點睛】本題考查了坡度的概念:斜坡的坡度等于斜坡的鉛直高度與對應的水平距離的比值,即斜坡的坡度等于斜坡的坡角的正弦.也考查了含30度的直角三角形三邊的關系和等腰直角三角形的性質.20、(1)40;(2)54,補圖見解析;(3)330;(4).【解析】

(1)根據由自主學習的時間是1小時的人數占30%,可求得本次調查的學生人數;(2),由自主學習的時間是0.5小時的人數為40×35%=14;(3)求出這40名學生自主學習時間不少于1.5小時的百分比乘以600即可;(4)根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與選中小亮A的情況,再利用概率公式求解即可求得答案.【詳解】(1)∵自主學習的時間是1小時的有12人,占30%,∴12÷30%=40,故答案為40;(2),故答案為54;自主學習的時間是0.5小時的人數為40×35%=14;補充圖形如圖:(3)600×=330;故答案為330;(4)畫樹狀圖得:∵共有12種等可能的結果,選中小亮A的有6種可能,∴P(A)=.21、(1)補全圖形見解析;(2)B;(3)估計該年級學生中“經常隨手丟垃圾”的學生約有75人,就該年級經常隨手丟垃圾的學生人數看出仍需要加強公共衛(wèi)生教育、宣傳和監(jiān)督.【解析】

(1)根據被調查的總人數求出C情況的人數與B情況人數所占比例即可;(2)根據眾數的定義求解即可;(3)該年級學生中“經常隨手丟垃圾”的學生=總人數×C情況的比值.【詳解】(1)∵被調查的總人數為60÷30%=200人,∴C情況的人數為200﹣(60+130)=10人,B情況人數所占比例為×100%=65%,補全圖形如下:(2)由條形圖知,B情況出現次數最多,所以眾數為B,故答案為B.(3)1500×5%=75,答:估計該年級學生中“經常隨手丟垃圾”的學生約有75人,就該年級經常隨手丟垃圾的學生人數看出仍需要加強公共衛(wèi)生教育、宣傳和監(jiān)督.【點睛】本題考查了眾數與扇形統(tǒng)計圖與條形統(tǒng)計圖,解題的關鍵是熟練的掌握眾數與扇形統(tǒng)計圖與條形統(tǒng)計圖的相關知識點.22、(1)k的值為3,m的值為1;(2)0<n≤1或n≥3.【解析】分析:(1)將A點代入y=x-2中即可求出m的值,然后將A的坐標代入反比例函數中即可求出k的值.(2)①當n=1時,分別求出M、N兩點的坐標即可求出PM與PN的關系;②由題意可知:P的坐標為(n,n),由于PN≥PM,從而可知PN≥2,根據圖象可求出n的范圍.詳解:(1)將A(3,m)代入y=x-2,∴m=3-2=1,∴A(3,1),將A(3,1)代入y=,∴k=3×1=3,m的值為1.(2)①當n=1時,P(1,1),令y=1,代入y=x-2,x-2=1,∴x=3,∴M(3,1),∴PM=2,令x=1代入y=,∴y=3,∴N(1,3),∴PN=2∴PM=PN,②P(n,n),點P在直線y=x上,過點P作平行于x軸的直線,交直線y=x-2于點M,M(n+2,n),∴PM=2,∵PN≥PM,即PN≥2,∴0<n≤1或n≥3點睛:本題考查反比例函數與一次函數的綜合問題,解題的關鍵是求出反比例函數與一次函數的解析式,本題屬于基礎題型.23、(1)y=﹣x2+2x+3;(2)當t=或t=時,△PCQ為直角三角形;(3

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論