




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
云南省楚雄彝族自治州大姚第一中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末聯(lián)考試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.若,,且,則與的夾角是()A. B. C. D.2.?dāng)?shù)列滿足,則數(shù)列的前項(xiàng)和等于()A. B. C. D.3.在等差數(shù)列中,若,則的值為()A.15 B.21 C.24 D.184.將函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,若當(dāng)時(shí),的圖象與直線恰有兩個(gè)公共點(diǎn),則的取值范圍為()A. B. C. D.5.已知,,為坐標(biāo)原點(diǎn),則的外接圓方程是()A. B.C. D.6.若,且,則的值是()A. B. C. D.7.已知在中,,則的形狀是A.銳角三角形 B.鈍角三角形C.等腰三角形 D.直角三角形8.△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知asinA-bsinB=4csinC,cosA=-,則=A.6 B.5 C.4 D.39.在中,角A,B,C所對(duì)的邊分別為a,b,c,若,,則的值為()A.4 B. C. D.10.在中,角的對(duì)邊分別是,若,則()A.5 B. C.4 D.3二、填空題:本大題共6小題,每小題5分,共30分。11.圓與圓的公共弦長(zhǎng)為_(kāi)_____________。12.已知,各項(xiàng)均為正數(shù)的數(shù)列滿足,,若,則的值是.13.抽樣調(diào)查某地區(qū)名教師的年齡和學(xué)歷狀況,情況如下餅圖:則估計(jì)該地區(qū)歲以下具有研究生學(xué)歷的教師百分比為_(kāi)______.14.在平行六面體中,為與的交點(diǎn),若存在實(shí)數(shù),使向量,則__________.15.已知直線l與圓C:交于A,B兩點(diǎn),,則滿足條件的一條直線l的方程為_(kāi)_____.16.若數(shù)列滿足,,則______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知的頂點(diǎn),邊上的中線所在直線方程為,邊上的高,所在直線方程為.(1)求頂點(diǎn)的坐標(biāo);(2)求直線的方程.18.已知函數(shù).(1)求(x)的最小正周期和單調(diào)遞增區(qū)間;(2)求f(x)在區(qū)間上的最大值和最小值.19.已知數(shù)列滿足關(guān)系式,.(1)用表示,,;(2)根據(jù)上面的結(jié)果猜想用和表示的表達(dá)式,并用數(shù)學(xué)歸納法證之.20.已知數(shù)列是以為首項(xiàng),為公比的等比數(shù)列,(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列的前項(xiàng)和.21.?dāng)?shù)列中,,(為常數(shù)).(1)若,,成等差數(shù)列,求的值;(2)是否存在,使得為等比數(shù)列?并說(shuō)明理由.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】
根據(jù)相互垂直的向量數(shù)量積為零,求出與的夾角.【詳解】由題有,即,故,因?yàn)?,所?故選:B.【點(diǎn)睛】本題考查了向量的數(shù)量積運(yùn)算,向量夾角的求解,屬于基礎(chǔ)題.2、A【解析】
當(dāng)為正奇數(shù)時(shí),可推出,當(dāng)為正偶數(shù)時(shí),可推出,將該數(shù)列的前項(xiàng)和表示為,結(jié)合前面的規(guī)律可計(jì)算出數(shù)列的前項(xiàng)和.【詳解】當(dāng)為正奇數(shù)時(shí),由題意可得,,兩式相減得;當(dāng)為正偶數(shù)時(shí),由題意可得,,兩式相加得.因此,數(shù)列的前項(xiàng)和為.故選:A.【點(diǎn)睛】本題考查數(shù)列求和,找出數(shù)列的規(guī)律是解題的關(guān)鍵,考查推理能力,屬于中等題.3、D【解析】
利用等差數(shù)列的性質(zhì),將等式全部化為的形式,再計(jì)算?!驹斀狻恳?yàn)椋?,則,所以.故選D【點(diǎn)睛】本題考查等差數(shù)列的性質(zhì),屬于基礎(chǔ)題。4、C【解析】
根據(jù)二倍角和輔助角公式化簡(jiǎn)可得,根據(jù)平移變換原則可得;當(dāng)時(shí),;利用正弦函數(shù)的圖象可知若的圖象與直線恰有兩個(gè)公共點(diǎn)可得,解不等式求得結(jié)果.【詳解】由題意得:由圖象平移可知:當(dāng)時(shí),,,,,又的圖象與直線恰有兩個(gè)公共點(diǎn),解得:本題正確選項(xiàng):【點(diǎn)睛】本題考查根據(jù)交點(diǎn)個(gè)數(shù)求解角的范圍的問(wèn)題,涉及到利用二倍角和輔助角公式化簡(jiǎn)三角函數(shù)、三角函數(shù)圖象平移變換原則的應(yīng)用等知識(shí);關(guān)鍵是能夠利用正弦函數(shù)的圖象,采用數(shù)形結(jié)合的方式確定角所處的范圍.5、A【解析】
根據(jù)圓的幾何性質(zhì)判斷出是直徑,由此求得圓心坐標(biāo)和半徑,進(jìn)而求得三角形外接圓的方程.【詳解】由于直角對(duì)的弦是直徑,故是圓的直徑,所以圓心坐標(biāo)為,半徑為,所以圓的標(biāo)準(zhǔn)方程為,化簡(jiǎn)得,故選A.【點(diǎn)睛】本小題主要考查三角形外接圓的方程的求法,考查圓的幾何性質(zhì),屬于基礎(chǔ)題.6、A【解析】
對(duì)兩邊平方,可得,進(jìn)而可得,再根據(jù),可知,由此即可求出結(jié)果.【詳解】因?yàn)?,所以,所以,所以,又,所以所?故選:A.【點(diǎn)睛】本題主要考查了同角的基本關(guān)系,屬于基礎(chǔ)題.7、D【解析】
利用正弦定理可將已知中的等號(hào)兩邊的“邊”轉(zhuǎn)化為它所對(duì)角的正弦,再利用余弦定理化簡(jiǎn)即得該三角形的形狀.【詳解】根據(jù)正弦定理,原式可變形為:所以整理得.故選.【點(diǎn)睛】本題主要考查正弦定理余弦定理解三角形,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和分析推理能力.8、A【解析】
利用余弦定理推論得出a,b,c關(guān)系,在結(jié)合正弦定理邊角互換列出方程,解出結(jié)果.【詳解】詳解:由已知及正弦定理可得,由余弦定理推論可得,故選A.【點(diǎn)睛】本題考查正弦定理及余弦定理推論的應(yīng)用.9、B【解析】
由正弦定理可得,,代入即可求解.【詳解】∵,,∴由正弦定理可得,,則.故選:B.【點(diǎn)睛】本題考查正弦定理的簡(jiǎn)單應(yīng)用,考查函數(shù)與方程思想,考查運(yùn)算求解能力,屬于基礎(chǔ)題.10、D【解析】
已知兩邊及夾角,可利用余弦定理求出.【詳解】由余弦定理可得:,解得.故選D.【點(diǎn)睛】本題主要考查利用正余弦定理解三角形,注意根據(jù)條件選用合適的定理解決.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
利用兩圓一般方程求兩圓公共弦方程,求其中一圓到公共弦的距離,利用直線被圓截得的弦長(zhǎng)公式可得所求.【詳解】由兩圓方程相減得兩圓公共弦方程為,即,圓化為,圓心到直線的距離為1,所以兩圓公共弦長(zhǎng)為,故答案為.【點(diǎn)睛】本題考查兩圓位置關(guān)系,直線與圓的位置關(guān)系,考查運(yùn)算能力,屬于基本題.12、【解析】
由題意得,依次求得,,,,,∵,且>0,∴,依次求得======,∴+=+=.考點(diǎn):數(shù)列的遞推公式.13、【解析】
根據(jù)餅狀圖中的歲以下本科學(xué)歷人數(shù)和占比可求得歲以下教師總?cè)藬?shù),從而可得其中的具有研究生學(xué)歷的教師人數(shù),進(jìn)而得到所求的百分比.【詳解】由歲以下本科學(xué)歷人數(shù)和占比可知,歲以下教師總?cè)藬?shù)為:人歲以下有研究生學(xué)歷的教師人數(shù)為:人歲以下有研究生學(xué)歷的教師的百分比為:本題正確結(jié)果:【點(diǎn)睛】本題考查利用餅狀圖計(jì)算總體中的數(shù)據(jù)分布和頻率分布的問(wèn)題,屬于基礎(chǔ)題.14、【解析】
在平行六面體中把向量用用表示,再利用待定系數(shù)法,求得.再求解。【詳解】如圖所示:因?yàn)?,又因?yàn)?,所以,所?故答案為:【點(diǎn)睛】本題主要考查了空間向量的基本定理,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.15、(答案不唯一)【解析】
確定圓心到直線的距離,即可求直線的方程.【詳解】由題意得圓心坐標(biāo),半徑,,∴圓心到直線的距離為,∴滿足條件的一條直線的方程為.故答案為:(答案不唯一).【點(diǎn)睛】本題考查直線和圓的方程的應(yīng)用,考查學(xué)生的計(jì)算能力,屬于中檔題.16、【解析】
利用遞推公式再遞推一步,得到一個(gè)新的等式,兩個(gè)等式相減,再利用累乘法可求出數(shù)列的通項(xiàng)公式,利用所求的通項(xiàng)公式可以求出的值.【詳解】得,,所以有,因此.故答案為:【點(diǎn)睛】本題考查了利用遞推公式求數(shù)列的通項(xiàng)公式,考查了累乘法,考查了數(shù)學(xué)運(yùn)算能力.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)【解析】
(1)根據(jù)邊上的高所在直線方程求出的斜率,由點(diǎn)斜式可得的方程,與所在直線方程聯(lián)立即可得結(jié)果;(2)設(shè)則,代入中,可求得點(diǎn)坐標(biāo),利用兩點(diǎn)式可得結(jié)果.【詳解】(1)由邊上的高所在直線方程為得,所以直線AB所在的直線方程為,即聯(lián)立解得所以頂點(diǎn)的坐標(biāo)為(4,3)(2)因?yàn)樵谥本€上,所以設(shè)則,代入中,得所以則直線的方程為,即【點(diǎn)睛】本題主要考查直線的方程,直線方程主要有五種形式,每種形式的直線方程都有其局限性,斜截式與點(diǎn)斜式要求直線斜率存在,所以用這兩種形式設(shè)直線方程時(shí)要注意討論斜是否存在;截距式要注意討論截距是否為零;兩點(diǎn)式要注意討論直線是否與坐標(biāo)軸平行;求直線方程的最終結(jié)果往往需要化為一般式.18、(1),的增區(qū)間是.(2).【解析】試題分析:(1)利用兩角和正弦公式和降冪公式化簡(jiǎn),得到的形式,利用公式計(jì)算周期.(2)利用正弦函數(shù)的單調(diào)區(qū)間,再求的單調(diào)性.(3)求三角函數(shù)的最小正周期一般化成,,形式,利用周期公式即可.(4)求解較復(fù)雜三角函數(shù)的單調(diào)區(qū)間時(shí),首先化成形式,再的單調(diào)區(qū)間,只需把看作一個(gè)整體代入相應(yīng)的單調(diào)區(qū)間,注意先把化為正數(shù),這是容易出錯(cuò)的地方.試題解析:(1)因?yàn)椋?=-1,故最小正周期為得故的增區(qū)間是.(2)因?yàn)椋裕谑?,?dāng),即時(shí),取得最大值2;當(dāng),即時(shí),取得最小值-1.考點(diǎn):(1)求三角函數(shù)的周期和單調(diào)區(qū)間;(2)求三角函數(shù)在閉區(qū)間的最值.19、(1),,(2)猜想:,證明見(jiàn)解析【解析】
(1)根據(jù)遞推關(guān)系依次代入求解,(2)根據(jù)規(guī)律猜想,再利用數(shù)學(xué)歸納法證明【詳解】解:(1),∴,,;(2)猜想:.證明:當(dāng)時(shí),結(jié)論顯然成立;假設(shè)時(shí)結(jié)論成立,即,則時(shí),,即時(shí)結(jié)論成立.綜上,對(duì)時(shí)結(jié)論成立.【點(diǎn)睛】本題考查歸納猜想與數(shù)學(xué)歸納法證明,考查基本分析論證能力,屬基礎(chǔ)題20、(1);(2)【解析】
(1)按等比數(shù)列的概念直接求解即可;(2)先求出的表達(dá)式,再利用裂項(xiàng)相消法即可求得數(shù)列的前項(xiàng)和.【詳解】(1)由等比數(shù)列通項(xiàng)公式得:(2)由(1)可得:【點(diǎn)睛】本題主要考查數(shù)列的通項(xiàng)公式問(wèn)題及利用裂項(xiàng)相消法求和的問(wèn)題,屬常規(guī)考題.21、(Ⅰ)p=1;(Ⅱ)存在實(shí)數(shù),使得{an}為等比數(shù)列【解析】
(Ⅰ)由已知求得a1,a4,再由-a1
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 展覽場(chǎng)地設(shè)備租賃合同(14篇)
- 廣東科學(xué)技術(shù)職業(yè)學(xué)院《微機(jī)原理與應(yīng)用A》2023-2024學(xué)年第二學(xué)期期末試卷
- 河南工業(yè)職業(yè)技術(shù)學(xué)院《種子質(zhì)量檢驗(yàn)理論與技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷
- 青海民族大學(xué)《用戶研究與體驗(yàn)》2023-2024學(xué)年第二學(xué)期期末試卷
- 揚(yáng)州中瑞酒店職業(yè)學(xué)院《競(jìng)技武術(shù)套路5》2023-2024學(xué)年第二學(xué)期期末試卷
- 2025年遼寧省建筑安全員B證考試題庫(kù)
- 蘇州大學(xué)應(yīng)用技術(shù)學(xué)院《色譜學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 2025年江西省安全員C證(專(zhuān)職安全員)考試題庫(kù)
- 山西財(cái)貿(mào)職業(yè)技術(shù)學(xué)院《工程信息學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 哈爾濱幼兒師范高等專(zhuān)科學(xué)?!队⒄Z(yǔ)課程標(biāo)準(zhǔn)解析與教材研究》2023-2024學(xué)年第二學(xué)期期末試卷
- 2025年天津市寧河區(qū)事業(yè)單位招聘12人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2024年福建省莆田市數(shù)學(xué)三上期末質(zhì)量檢測(cè)模擬試題含解析
- 2025年山東菏澤投資發(fā)展集團(tuán)限公司招聘61人管理單位筆試遴選500模擬題附帶答案詳解
- 幕墻工程項(xiàng)目管理手冊(cè)
- 地理中圖版2025新版七年級(jí)下冊(cè) 中圖版七年級(jí)下地理教學(xué)計(jì)劃
- 北京某中學(xué)2024-2025學(xué)年九年級(jí)上學(xué)期期中數(shù)學(xué)試題
- 2025-2025年七年級(jí)英語(yǔ)下冊(cè)教學(xué)計(jì)劃
- 酒店客房管理手冊(cè)
- 基坑支護(hù)及土方開(kāi)挖施工方案
- 國(guó)家安全教育(臨沂職業(yè)學(xué)院)知到智慧樹(shù)答案
- 公司安全生產(chǎn)事故隱患內(nèi)部報(bào)告獎(jiǎng)勵(lì)工作制度
評(píng)論
0/150
提交評(píng)論