![2023-2024學(xué)年河南省三門峽市高一數(shù)學(xué)第二學(xué)期期末綜合測(cè)試試題含解析_第1頁](http://file4.renrendoc.com/view3/M01/08/2C/wKhkFmZevUmAKMJlAAHdB2vviSw068.jpg)
![2023-2024學(xué)年河南省三門峽市高一數(shù)學(xué)第二學(xué)期期末綜合測(cè)試試題含解析_第2頁](http://file4.renrendoc.com/view3/M01/08/2C/wKhkFmZevUmAKMJlAAHdB2vviSw0682.jpg)
![2023-2024學(xué)年河南省三門峽市高一數(shù)學(xué)第二學(xué)期期末綜合測(cè)試試題含解析_第3頁](http://file4.renrendoc.com/view3/M01/08/2C/wKhkFmZevUmAKMJlAAHdB2vviSw0683.jpg)
![2023-2024學(xué)年河南省三門峽市高一數(shù)學(xué)第二學(xué)期期末綜合測(cè)試試題含解析_第4頁](http://file4.renrendoc.com/view3/M01/08/2C/wKhkFmZevUmAKMJlAAHdB2vviSw0684.jpg)
![2023-2024學(xué)年河南省三門峽市高一數(shù)學(xué)第二學(xué)期期末綜合測(cè)試試題含解析_第5頁](http://file4.renrendoc.com/view3/M01/08/2C/wKhkFmZevUmAKMJlAAHdB2vviSw0685.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年河南省三門峽市高一數(shù)學(xué)第二學(xué)期期末綜合測(cè)試試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知函數(shù)是連續(xù)的偶函數(shù),且時(shí),是單調(diào)函數(shù),則滿足的所有之積為()A. B. C. D.2.在中,,,則()A.或 B. C. D.3.過點(diǎn)且與圓相切的直線方程為()A. B.或C.或 D.或4.在正方體中,直線與平面所成角的正弦值為()A. B. C. D.5.設(shè)變量滿足約束條件,則目標(biāo)函數(shù)的最大值是()A.7 B.5 C.3 D.26.設(shè)正實(shí)數(shù)滿足,則當(dāng)取得最大值時(shí),的最大值為()A.0 B.1 C. D.37.已知,則的值為()A. B. C. D.8.某幾何體的三視圖如圖所示,則該幾何體的表面積為()A. B. C. D.9.設(shè)雙曲線的左右焦點(diǎn)分別是,過的直線交雙曲線的左支于兩點(diǎn),若,且,則雙曲線的離心率是()A. B. C. D.10.已知均為銳角,,則=A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)是定義域?yàn)镽的奇函數(shù),當(dāng)時(shí),則的表達(dá)式為________.12.已知平行四邊形的周長(zhǎng)為,,則平行四邊形的面積是_______13.化簡(jiǎn):________14.在平面直角坐標(biāo)系中,在軸、軸正方向上的投影分別是、,則與同向的單位向量是__________.15.已知函數(shù),對(duì)于下列說法:①要得到的圖象,只需將的圖象向左平移個(gè)單位長(zhǎng)度即可;②的圖象關(guān)于直線對(duì)稱:③在內(nèi)的單調(diào)遞減區(qū)間為;④為奇函數(shù).則上述說法正確的是________(填入所有正確說法的序號(hào)).16.在平面直角坐標(biāo)系xOy中,角α與角β均以O(shè)x為始邊,它們的終邊關(guān)于y軸對(duì)稱.若,則=___________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.在三棱錐中,平面平面,,,分別是棱,上的點(diǎn)(1)為的中點(diǎn),求證:平面平面.(2)若,平面,求的值.18.已知向量,,且.(1)求的值;(2)求的值.19.已知函數(shù)(1)求的最小正周期;(2)求的單調(diào)增區(qū)間;(3)若求函數(shù)的值域.20.若數(shù)列中存在三項(xiàng),按一定次序排列構(gòu)成等比數(shù)列,則稱為“等比源數(shù)列”。(1)在無窮數(shù)列中,,,求數(shù)列的通項(xiàng)公式;(2)在(1)的結(jié)論下,試判斷數(shù)列是否為“等比源數(shù)列”,并證明你的結(jié)論;(3)已知無窮數(shù)列為等差數(shù)列,且,(),求證:數(shù)列為“等比源數(shù)列”.21.設(shè)正項(xiàng)等比數(shù)列且的等差中項(xiàng)為.(1)求數(shù)列的通項(xiàng)公式;(2)若,數(shù)列的前n項(xiàng)為,數(shù)列滿足,為數(shù)列的前項(xiàng)和,求.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】
由y=f(x+2)為偶函數(shù)分析可得f(x)關(guān)于直線x=2對(duì)稱,進(jìn)而分析可得函數(shù)f(x)在(2,+∞)和(﹣∞,2)上都是單調(diào)函數(shù),據(jù)此可得若f(x)=f(1),則有x=1或4﹣x=1,變形為二次方程,結(jié)合根與系數(shù)的關(guān)系分析可得滿足f(x)=f(1)的所有x之積,即可得答案.【詳解】根據(jù)題意,函數(shù)y=f(x+2)為偶函數(shù),則函數(shù)f(x)關(guān)于直線x=2對(duì)稱,又由當(dāng)x>2時(shí),函數(shù)y=f(x)是單調(diào)函數(shù),則其在(﹣∞,2)上也是單調(diào)函數(shù),若f(x)=f(1),則有x=1或4﹣x=1,當(dāng)x=1時(shí),變形可得x2+3x﹣3=0,有2個(gè)根,且兩根之積為﹣3,當(dāng)4﹣x=1時(shí),變形可得x2+x﹣13=0,有2個(gè)根,且兩根之積為﹣13,則滿足f(x)=f(1)的所有x之積為(﹣3)×(﹣13)=39;故選:D.【點(diǎn)睛】本題考查抽象函數(shù)的應(yīng)用,涉及函數(shù)的對(duì)稱性與單調(diào)性的綜合應(yīng)用,屬于綜合題.2、C【解析】
由正弦定理計(jì)算即可?!驹斀狻坑深}根據(jù)正弦定理可得即,解得,所以為或,又因?yàn)?,所以為故選C.【點(diǎn)睛】本題考查正弦定理,屬于簡(jiǎn)單題。3、C【解析】
分別考慮斜率存在和不存在兩種情況得到答案.【詳解】如圖所示:當(dāng)斜率不存在時(shí):當(dāng)斜率存在時(shí):設(shè)故答案選C【點(diǎn)睛】本題考查了圓的切線問題,忽略掉斜率不存在是容易發(fā)生的錯(cuò)誤.4、C【解析】
由題,連接,設(shè)其交平面于點(diǎn)易知平面,即(或其補(bǔ)角)為與平面所成的角,再利用等體積法求得AO的長(zhǎng)度,即可求得的長(zhǎng)度,可得結(jié)果.【詳解】設(shè)正方體的邊長(zhǎng)為1,如圖,連接,設(shè)其交平面于點(diǎn),則易知,,又,所以平面,即得平面.在三棱錐中,由等體積法知,,即,解得,所以.連接,則(或其補(bǔ)角)為與平面所成的角.在中,.故選C.【點(diǎn)睛】本題考查了立體幾何中線面角的求法,作出線面角是解題的關(guān)鍵,求高的長(zhǎng)度會(huì)用到等體積法,屬于中檔題.5、B【解析】
由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得結(jié)論.【詳解】畫出約束條件,表示的可行域,如圖,由可得,將變形為,平移直線,由圖可知當(dāng)直經(jīng)過點(diǎn)時(shí),直線在軸上的截距最大,最大值為,故選B.【點(diǎn)睛】本題主要考查線性規(guī)劃中,利用可行域求目標(biāo)函數(shù)的最值,屬于簡(jiǎn)單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實(shí)線還是虛線);(2)找到目標(biāo)函數(shù)對(duì)應(yīng)的最優(yōu)解對(duì)應(yīng)點(diǎn)(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過或最后通過的頂點(diǎn)就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.6、B【解析】
x,y,z為正實(shí)數(shù),且,根據(jù)基本不等式得,當(dāng)且僅當(dāng)x=2y取等號(hào),所以x=2y時(shí),取得最大值1,此時(shí),,當(dāng)時(shí),取最大值1,的最大值為1,故選B.7、C【解析】
根據(jù)輔助角公式即可.【詳解】由輔助角公式得所以,選C.【點(diǎn)睛】本題主要考查了輔助角公式的應(yīng)用:,屬于基礎(chǔ)題.8、D【解析】
先還原幾何體,再根據(jù)形狀求表面積.【詳解】由三視圖知,該幾何體的直觀圖如圖所示,其表面積為,故選.【點(diǎn)睛】本題考查三視圖以及幾何體表面積,考查空間想象能力以及基本求解能力,屬中檔題.9、C【解析】,則,所以,,則,所以,故選C。點(diǎn)睛:離心率問題關(guān)鍵是利用圓錐曲線的幾何性質(zhì),以及三角形的幾何關(guān)系來解決,本題中,由雙曲線的幾何性質(zhì),可以將圖中的各邊長(zhǎng)都表示出來,再利用同一個(gè)角在兩個(gè)三角形中的余弦定理,就可以得到的等量關(guān)系,求出離心率。10、A【解析】因?yàn)?所以,又,所以,則;因?yàn)榍?所以,又,所以;則====;故選A.點(diǎn)睛:三角函數(shù)式的化簡(jiǎn)要遵循“三看”原則(1)一看“角”,這是最重要的一環(huán),通過看角之間的區(qū)別和聯(lián)系,把角進(jìn)行合理的拆分,從而正確使用公式;(2)而看“函數(shù)名稱”看函數(shù)名稱之間的差異,從而確定使用公式,常見的有“切化弦”;(3)三看“結(jié)構(gòu)特征”,分析結(jié)構(gòu)特征,可以幫助我們找到變形的方向,如“遇到分式通分”等.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】試題分析:當(dāng)時(shí),,,因是奇函數(shù),所以,是定義域?yàn)镽的奇函數(shù),所以,所以考點(diǎn):函數(shù)解析式、函數(shù)的奇偶性12、【解析】
設(shè),根據(jù)條件可以求出,兩邊平方可以得到關(guān)系式,由余弦定理可以表示出,把代入得到的關(guān)系式,聯(lián)立求出的值,過作垂直于,設(shè),則可以表示,利用勾股定理,求出的值,確定長(zhǎng),即求出平行四邊形的面積【詳解】設(shè)又,由余弦定理將代入,得到將(2)代入(1)得到可以解得:(另一種情況不影響結(jié)果),過作垂直于,設(shè),則,所以填寫【點(diǎn)睛】幾何題如果關(guān)系量理清不了,可以嘗試作圖,引入相鄰邊的參數(shù),通過方程把參數(shù)求出,平行四邊形問題可以通過轉(zhuǎn)化變?yōu)槿切螁栴},進(jìn)而把問題簡(jiǎn)單化.13、【解析】
根據(jù)三角函數(shù)的誘導(dǎo)公式,準(zhǔn)確運(yùn)算,即可求解.【詳解】由題意,可得.故答案為:.【點(diǎn)睛】本題主要考查了三角函數(shù)的誘導(dǎo)公式的化簡(jiǎn)、求值問題,其中解答中熟記三角函數(shù)的誘導(dǎo)公式,準(zhǔn)確運(yùn)算是解答的關(guān)鍵,著重考查了推理與計(jì)算能力,屬于基礎(chǔ)題.14、【解析】
根據(jù)題意得出,再利用單位向量的定義即可求解.【詳解】由在軸、軸正方向上的投影分別是、,可得,所以與同向的單位向量為,故答案為:【點(diǎn)睛】本題考查了向量的坐標(biāo)表示以及單位向量的定義,屬于基礎(chǔ)題.15、②④【解析】
結(jié)合三角函數(shù)的圖象與性質(zhì)對(duì)四個(gè)結(jié)論逐個(gè)分析即可得出答案.【詳解】①要得到的圖象,應(yīng)將的圖象向左平移個(gè)單位長(zhǎng)度,所以①錯(cuò)誤;②令,,解得,,所以直線是的一條對(duì)稱軸,故②正確;③令,,解得,,因?yàn)椋栽诙x域內(nèi)的單調(diào)遞減區(qū)間為和,所以③錯(cuò)誤;④是奇函數(shù),所以該說法正確.【點(diǎn)睛】本題考查了正弦型函數(shù)的對(duì)稱軸、單調(diào)性、奇偶性與平移變換,考查了學(xué)生對(duì)的圖象與性質(zhì)的掌握,屬于中檔題.16、【解析】試題分析:因?yàn)楹完P(guān)于軸對(duì)稱,所以,那么,(或),所以.【考點(diǎn)】同角三角函數(shù),誘導(dǎo)公式,兩角差的余弦公式【名師點(diǎn)睛】本題考查了角的對(duì)稱關(guān)系,以及誘導(dǎo)公式,常用的一些對(duì)稱關(guān)系包含:若與的終邊關(guān)于軸對(duì)稱,則,若與的終邊關(guān)于軸對(duì)稱,則,若與的終邊關(guān)于原點(diǎn)對(duì)稱,則.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)【解析】
(1)根據(jù)等腰三角形的性質(zhì),證得,由面面垂直的性質(zhì)定理,證得平面,進(jìn)而證得平面平面.(2)根據(jù)線面平行的性質(zhì)定理,證得,平行線分線段成比例,由此求得的值.【詳解】(1),為的中點(diǎn),所以.又因?yàn)槠矫嫫矫?,平面平面,且平面,所以平面,又平面,所以平面平?(2)∵平面,面,面面∴,∴.【點(diǎn)睛】本小題主要考查面面垂直的判定定理和性質(zhì)定理,考查線面平行的性質(zhì)定理,考查空間想象能力和邏輯推理能力,屬于中檔題.18、(1);(2)【解析】
(1)由向量垂直的坐標(biāo)運(yùn)算可得,再求解即可;(2)利用三角函數(shù)誘導(dǎo)公式可得原式,再構(gòu)造齊次式求解即可.【詳解】解:(1)因?yàn)?,所以,因?yàn)?,,所以,即,?(2).【點(diǎn)睛】本題考查了向量垂直的坐標(biāo)運(yùn)算,重點(diǎn)考查了三角函數(shù)誘導(dǎo)公式及構(gòu)造齊次式求值,屬中檔題.19、(1)(2);(3).【解析】
(1)先化簡(jiǎn)函數(shù)f(x)的解析式,再求函數(shù)的最小正周期;(2)解不等式,即得函數(shù)的增區(qū)間;(3)根據(jù)三角函數(shù)的性質(zhì)求函數(shù)的值域.【詳解】(1)由題得,所以函數(shù)的最小正周期為.(2)令,所以,所以函數(shù)的單調(diào)增區(qū)間為.(3),所以函數(shù)的值域?yàn)?【點(diǎn)睛】本題主要考查三角恒等變換,考查三角函數(shù)的圖像和性質(zhì),考查三角函數(shù)的值域,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于基礎(chǔ)題.20、(1);(2)不是,證明見解析;(3)證明見解析.【解析】
(1)由,可得出,則數(shù)列為等比數(shù)列,然后利用等比數(shù)列的通項(xiàng)公式可間接求出;(2)假設(shè)數(shù)列為“等比源數(shù)列”,則此數(shù)列中存在三項(xiàng)成等比數(shù)列,可得出,展開后得出,然后利用數(shù)的奇偶性即可得出結(jié)論;(3)設(shè)等差數(shù)列的公差為,假設(shè)存在三項(xiàng)使得,展開得出,從而可得知,當(dāng),時(shí),原命題成立.【詳解】(1),得,即,且.所以,數(shù)列是以為首項(xiàng),以為公比的等比數(shù)列,則,因此,;(2)數(shù)列不是“等比源數(shù)列”,下面用反證法來證明.假設(shè)數(shù)列是“等比源數(shù)列”,則存在三項(xiàng)、、,設(shè).由于數(shù)列為單調(diào)遞增的正項(xiàng)數(shù)列,則,所以.得,化簡(jiǎn)得,等式兩邊同時(shí)除以得,,且、、,則,,,,則為偶數(shù),為奇數(shù),等式不成立.因此,數(shù)列中不存在任何三項(xiàng),按一定的順序排列構(gòu)成“等比源數(shù)列”;(3)不妨設(shè)等差數(shù)列的公差.當(dāng)時(shí),等差數(shù)列為非零常數(shù)列,此時(shí),數(shù)列為“等比源數(shù)列”;當(dāng)時(shí),,則且,數(shù)列中必有一項(xiàng),為了使得數(shù)列為“等比源數(shù)列”,只需數(shù)列中存在第項(xiàng)、第項(xiàng)使得,且有,即,,當(dāng)時(shí),即當(dāng),時(shí),等式成立,所以,數(shù)列
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 電動(dòng)摩托車電子電氣技術(shù)的動(dòng)力之源
- 中國(guó)網(wǎng)頁游戲行業(yè)市場(chǎng)發(fā)展現(xiàn)狀及前景趨勢(shì)與投資分析研究報(bào)告(2024-2030版)
- 現(xiàn)代服務(wù)業(yè)中人力資源管理的創(chuàng)新實(shí)踐
- 聯(lián)合Sentinel-2和Landsat 8-9的云及云影下山區(qū)積雪重建及時(shí)空變化分析
- 自貢關(guān)于成立倉(cāng)儲(chǔ)貨架公司可行性研究報(bào)告
- 痰濕型與非痰濕型多囊卵巢綜合征患者尿酸水平的差異性分析
- ABI3BP蘇木化修飾在心肌細(xì)胞衰老中的作用及機(jī)制研究
- 改性超濾膜處理畜禽廢水回用培育花紅莧菜的研究
- 2025年中國(guó)廣東省紅色旅游未來趨勢(shì)預(yù)測(cè)分析及投資規(guī)劃研究建議報(bào)告
- 研會(huì)中期述職報(bào)告
- 兒科影像診斷學(xué)課件
- tlc-jc dy001通信用高頻開關(guān)電源系統(tǒng)檢驗(yàn)報(bào)告模板va
- NPI管理流程文檔
- 閥門噪聲計(jì)算程序(IEC)(帶公式)
- 2022年RDA5807m+IIC收音機(jī)51單片機(jī)C程序上課講義
- 雅馬哈貼片機(jī)_修機(jī)_調(diào)機(jī)的經(jīng)驗(yàn)之談1
- 義務(wù)教育《勞動(dòng)》課程標(biāo)準(zhǔn)(2022年版)
- 2018年黑龍江統(tǒng)招專升本公共英語真題
- 大學(xué)物理光學(xué)答案
- 老撾10大經(jīng)濟(jì)特區(qū)
- 通用標(biāo)準(zhǔn)快裝接頭尺寸表
評(píng)論
0/150
提交評(píng)論