![2024屆湖北省孝感市八校教學(xué)聯(lián)盟數(shù)學(xué)高一下期末學(xué)業(yè)水平測(cè)試試題含解析_第1頁(yè)](http://file4.renrendoc.com/view14/M05/27/23/wKhkGWZf1VOAZmUtAAI4tpSuQhM160.jpg)
![2024屆湖北省孝感市八校教學(xué)聯(lián)盟數(shù)學(xué)高一下期末學(xué)業(yè)水平測(cè)試試題含解析_第2頁(yè)](http://file4.renrendoc.com/view14/M05/27/23/wKhkGWZf1VOAZmUtAAI4tpSuQhM1602.jpg)
![2024屆湖北省孝感市八校教學(xué)聯(lián)盟數(shù)學(xué)高一下期末學(xué)業(yè)水平測(cè)試試題含解析_第3頁(yè)](http://file4.renrendoc.com/view14/M05/27/23/wKhkGWZf1VOAZmUtAAI4tpSuQhM1603.jpg)
![2024屆湖北省孝感市八校教學(xué)聯(lián)盟數(shù)學(xué)高一下期末學(xué)業(yè)水平測(cè)試試題含解析_第4頁(yè)](http://file4.renrendoc.com/view14/M05/27/23/wKhkGWZf1VOAZmUtAAI4tpSuQhM1604.jpg)
![2024屆湖北省孝感市八校教學(xué)聯(lián)盟數(shù)學(xué)高一下期末學(xué)業(yè)水平測(cè)試試題含解析_第5頁(yè)](http://file4.renrendoc.com/view14/M05/27/23/wKhkGWZf1VOAZmUtAAI4tpSuQhM1605.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆湖北省孝感市八校教學(xué)聯(lián)盟數(shù)學(xué)高一下期末學(xué)業(yè)水平測(cè)試試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.若直線與直線平行,則的值為A. B. C. D.2.如圖,設(shè)是正六邊形的中心,則與相等的向量為()A. B. C. D.3.如圖所示,在ΔABC,已知∠A:∠B=1:2,角C的平分線CD把三角形面積分為3:2兩部分,則cosAA.13 B.12 C.34.某學(xué)校高一、高二、高三年級(jí)的學(xué)生人數(shù)分別為、、人,該校為了了解本校學(xué)生視力情況,現(xiàn)用分層抽樣的方法從該校高中三個(gè)年級(jí)的學(xué)生中抽取容量為的樣本,則應(yīng)從高三年級(jí)抽取的學(xué)生人數(shù)為()A. B. C. D.5.設(shè)函數(shù)是定義在上的奇函數(shù),當(dāng)時(shí),,則()A.-4 B. C. D.6.等比數(shù)列的前項(xiàng)和為,若,則公比()A. B. C. D.7.函數(shù)的最大值為A.4 B.5 C.6 D.78.設(shè),,,則()A. B.C. D.9.已知,,則()A.2 B. C.4 D.10.某學(xué)生4次模擬考試英語(yǔ)作文的減分情況如下表:顯然與之間有較好的線性相關(guān)關(guān)系,則其線性回歸方程為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.某空間幾何體的三視圖如圖所示,則該幾何體的體積為________12.已知正方體的棱長(zhǎng)為,點(diǎn)、分別為、的中點(diǎn),則點(diǎn)到平面的距離為______.13.正方體中,分別是的中點(diǎn),則所成的角的余弦值是__________.14.P是棱長(zhǎng)為4的正方體的棱的中點(diǎn),沿正方體表面從點(diǎn)A到點(diǎn)P的最短路程是_______.15.過點(diǎn)(2,-3)且在兩坐標(biāo)軸上的截距互為相反數(shù)的直線方程為_________________.16.設(shè)公比為q(q>0)的等比數(shù)列{an}的前n項(xiàng)和為{Sn}.若,,則q=______________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖所示,是正三角形,線段和都垂直于平面,設(shè),,且為的中點(diǎn).(1)求證:平面;(2)求平面與平面所成的較小二面角的大小18.如圖所示,在四棱錐中,底面是棱長(zhǎng)為2的正方形,側(cè)面為正三角形,且面面,分別為棱的中點(diǎn).(1)求證:平面;(2)求二面角的正切值.19.己知向量,,設(shè)函數(shù),且的圖象過點(diǎn)和點(diǎn).(1)當(dāng)時(shí),求函數(shù)的最大值和最小值及相應(yīng)的的值;(2)將函數(shù)的圖象向右平移個(gè)單位后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來的4倍,縱坐標(biāo)不變,得到函數(shù)的圖象,若在有兩個(gè)不同的解,求實(shí)數(shù)的取值范圍.20.設(shè)數(shù)列是等差數(shù)列,其前n項(xiàng)和為;數(shù)列是等比數(shù)列,公比大于0,其前項(xiàng)和為.已知,,,.(1)求數(shù)列和數(shù)列的通項(xiàng)公式;(2),求正整數(shù)n的值.21.已知小島A的周圍38海里內(nèi)有暗礁,船正向南航行,在B處測(cè)得小島A在船的南偏東30°,航行30海里后在C處測(cè)得小島A在船的南偏東45°,如果此船不改變航向,繼續(xù)向南航行,問有無(wú)觸礁的危險(xiǎn)?
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】試題分析:由兩直線平行可知系數(shù)滿足考點(diǎn):兩直線平行的判定2、D【解析】
容易看出,四邊形是平行四邊形,從而得出.【詳解】根據(jù)圖形看出,四邊形是平行四邊形故選:【點(diǎn)睛】本題考查相等向量概念辨析,屬于基礎(chǔ)題.3、C【解析】
由兩個(gè)三角形的面積比,得到邊ACCB=32,利用正弦定理【詳解】∵角C的平分線CD,∴∠ACD=∠BCD∵S∴設(shè)AC=3x,CB=2x,∵∠A:∠B=1:2,設(shè)∠A=α,∠B=2α,在ΔABC中,利用正弦定理2xsin解得:cosα=【點(diǎn)睛】本題考查三角形面積公式、正弦定理在平面幾何中的綜合應(yīng)用.4、C【解析】
設(shè)從高三年級(jí)抽取的學(xué)生人數(shù)為,根據(jù)總體中和樣本中高三年級(jí)所占的比例相等列等式求出的值.【詳解】設(shè)從高三年級(jí)抽取的學(xué)生人數(shù)為,由題意可得,解得,因此,應(yīng)從高三年級(jí)抽取的學(xué)生人數(shù)為,故選:C.【點(diǎn)睛】本題考查分層抽樣中的相關(guān)計(jì)算,解題時(shí)要利用總體中每層的抽樣比例相等或者總體或樣本中每層的所占的比相等來列等式求解,考查運(yùn)算求解能力,屬于基礎(chǔ)題.5、A【解析】
由奇函數(shù)的性質(zhì)可得:即可求出【詳解】因?yàn)槭嵌x在上的奇函數(shù),所以又因?yàn)楫?dāng)時(shí),,所以,所以,選A.【點(diǎn)睛】本題主要考查了函數(shù)的性質(zhì)中的奇偶性。其中奇函數(shù)主要有以下幾點(diǎn)性質(zhì):1、圖形關(guān)于原點(diǎn)對(duì)稱。2、在定義域上滿足。3、若定義域包含0,一定有。6、A【解析】
將轉(zhuǎn)化為關(guān)于的方程,解方程可得的值.【詳解】∵,∴,又,∴.故選A.【點(diǎn)睛】本題考查等比數(shù)列的基本運(yùn)算,等比數(shù)列中共有五個(gè)量,其中是基本量,這五個(gè)量可“知三求二”,求解的實(shí)質(zhì)是解方程或解方程組.7、B【解析】試題分析:因?yàn)?,而,所以?dāng)時(shí),取得最大值5,選B.【考點(diǎn)】正弦函數(shù)的性質(zhì)、二次函數(shù)的性質(zhì)【名師點(diǎn)睛】求解本題易出現(xiàn)的錯(cuò)誤是認(rèn)為當(dāng)時(shí),函數(shù)取得最大值.8、B【解析】
由指數(shù)函數(shù)的性質(zhì)得,由對(duì)數(shù)函數(shù)的性質(zhì)得,根據(jù)正切函數(shù)的性質(zhì)得,即可求解,得到答案.【詳解】由指數(shù)函數(shù)的性質(zhì),可得,由對(duì)數(shù)函數(shù)的性質(zhì)可得,根據(jù)正切函數(shù)的性質(zhì),可得,所以,故選B.【點(diǎn)睛】本題主要考查了指數(shù)式、對(duì)數(shù)式以及正切函數(shù)值的比較大小問題,其中解答中熟記指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的性質(zhì),以及正切函數(shù)的性質(zhì)得到的取值范圍是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.9、C【解析】
先求出的坐標(biāo),再利用向量的模的公式求解.【詳解】由題得=(0,4)所以.故選C【點(diǎn)睛】本題主要考查向量的坐標(biāo)的求法和向量的模的計(jì)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和分析推理能力.10、D【解析】
求出樣本數(shù)據(jù)的中心,代入選項(xiàng)可得D是正確的.【詳解】,所以這組數(shù)據(jù)的中心為,對(duì)選項(xiàng)逐個(gè)驗(yàn)證,可知只有過樣本點(diǎn)中心.【點(diǎn)睛】本題沒有提供最小二乘法的公式,所以試題的意圖不是考查公式計(jì)算,而是要考查回歸直線過樣本點(diǎn)中心這一概念.二、填空題:本大題共6小題,每小題5分,共30分。11、2【解析】
根據(jù)三視圖還原幾何體,為一個(gè)底面是直角梯形的四棱錐,根據(jù)三視圖的數(shù)據(jù),分別求出其底面積和高,求出體積,得到答案.【詳解】由三視圖還原幾何體如圖所示,幾何體是一個(gè)底面是直角梯形的四棱錐,由三視圖可知,其底面積為,高所以幾何體的體積為.故答案為.【點(diǎn)睛】本題考查三視圖還原幾何體,求四棱錐的體積,屬于簡(jiǎn)單題.12、【解析】
作出圖形,取的中點(diǎn),連接,證明平面,可知點(diǎn)平面的距離等于點(diǎn)到平面的距離,然后利用等體積法計(jì)算出點(diǎn)到平面的距離,即為所求.【詳解】如下圖所示,取的中點(diǎn),連接,在正方體中,且,、分別為、的中點(diǎn),且,所以,四邊形為平行四邊形,且,又,,平面,平面,平面,則點(diǎn)平面的距離等于點(diǎn)到平面的距離,的面積為,在正方體中,平面,且平面,,易知三棱錐的體積為.的面積為.設(shè)點(diǎn)到平面的距離為,則,.故答案為:.【點(diǎn)睛】本題考查點(diǎn)到平面的距離的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意等體積法的合理運(yùn)用.13、【解析】
取的中點(diǎn),由得出異面直線與所成的角為,然后在由余弦定理計(jì)算出,可得出結(jié)果.【詳解】取的中點(diǎn),由且可得為所成的角,設(shè)正方體棱長(zhǎng)為,中利用勾股定理可得,又,由余弦定理可得,故答案為.【點(diǎn)睛】本題考查異面直線所成角的計(jì)算,一般利用平移直線找出異面直線所成的角,再選擇合適的三角形,利用余弦定理或銳角三角函數(shù)來計(jì)算,考查空間想象能力與計(jì)算能力,屬于中等題.14、【解析】
從圖形可以看出圖形的展開方式有二,一是以底棱BC,CD為軸,可以看到此兩種方式是對(duì)稱的,所得結(jié)果一樣,另外一種是以側(cè)棱為軸展開,即以BB1,DD1為軸展開,此兩種方式對(duì)稱,求得結(jié)果一樣,故解題時(shí)選擇以BC為軸展開與BB1為軸展開兩種方式驗(yàn)證即可【詳解】由題意,若以BC為軸展開,則AP兩點(diǎn)連成的線段所在的直角三角形的兩直角邊的長(zhǎng)度分別為4,6,故兩點(diǎn)之間的距離是若以BB1為軸展開,則AP兩點(diǎn)連成的線段所在的直角三角形的兩直角邊的長(zhǎng)度分別為2,8,故兩點(diǎn)之間的距離是故沿正方體表面從點(diǎn)A到點(diǎn)P的最短路程是cm故答案為【點(diǎn)睛】本題考查多面體和旋轉(zhuǎn)體表面上的最短距離問題,求解的關(guān)鍵是能夠根據(jù)題意把求幾何體表面上兩點(diǎn)距離問題轉(zhuǎn)移到平面中來求15、【解析】分析:分類討論截距為0和截距不為零兩種情況求解直線方程即可.詳解:當(dāng)截距為0時(shí),直線的方程為,滿足題意;當(dāng)截距不為0時(shí),設(shè)直線的方程為,把點(diǎn)代入直線方程可得,此時(shí)直線方程為.故答案為.點(diǎn)睛:求解直線方程時(shí)應(yīng)該注意以下問題:一是根據(jù)斜率求傾斜角,要注意傾斜角的范圍;二是求直線方程時(shí),若不能斷定直線是否具有斜率時(shí),應(yīng)對(duì)斜率存在與不存在加以討論;三是在用截距式時(shí),應(yīng)先判斷截距是否為0,若不確定,則需分類討論.16、【解析】將,兩個(gè)式子全部轉(zhuǎn)化成用,q表示的式子.即,兩式作差得:,即:,解之得:(舍去)三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】
(1)取的中點(diǎn),連接,先證即說明,再由線面平行的判定定理說明平面.(2)延長(zhǎng)交的延長(zhǎng)線于,連.說明為所求二面角的平面角.再計(jì)算即可.【詳解】解:(1)如圖所示,取的中點(diǎn),連接.∵,∴.又,∴.∴四邊形為平行四邊形.故.∵平面,平面,∴平面.(2)延長(zhǎng)交的延長(zhǎng)線于,連.由,知,為的中點(diǎn),又為的中點(diǎn),∴.又平面,,∴平面.∴為所求二面角的平面角.在等腰直角三角形中,易求.故所求二面角的大小為.【點(diǎn)睛】本題考查線面平行、二面角的平面角,屬于中檔題.18、(1)見證明;(2)【解析】
(1)取PD中點(diǎn)G,可證EFGA是平行四邊形,從而,得證線面平行;(2)取AD中點(diǎn)O,連結(jié)PO,可得面,連交于,可證是二面角的平面角,再在中求解即得.【詳解】(1)證明:取PD中點(diǎn)G,連結(jié)為的中位線,且,又且,且,∴EFGA是平行四邊形,則,又面,面,面;(2)解:取AD中點(diǎn)O,連結(jié)PO,∵面面,為正三角形,面,且,連交于,可得,,則,即.連,又,可得平面,則,即是二面角的平面角,在中,∴,即二面角的正切值為.【點(diǎn)睛】本題考查線面平行證明,考查求二面角.求二面角的步驟是一作二證三計(jì)算.即先作出二面角的平面角,然后證明此角是要求的二面角的平面角,最后在三角形中計(jì)算.19、(1)最大值為2,此時(shí);最小值為-1,此時(shí).(2)【解析】
(1)根據(jù)向量數(shù)量積坐標(biāo)公式,列出函數(shù),再根據(jù)函數(shù)圖像過定點(diǎn),求解函數(shù)解析式,當(dāng)時(shí),解出的范圍,根據(jù)三角函數(shù)性質(zhì),可求最值;(2)根據(jù)三角函數(shù)平移伸縮變換,寫出解析式,畫出在上的圖象,根據(jù)圖像即可求解參數(shù)取值范圍.【詳解】解:(1)由題意知.根據(jù)的圖象過點(diǎn)和,得到,解得,.當(dāng)時(shí),,,最大值為2,此時(shí),最小值為-1,此時(shí).(2)將函數(shù)的圖象向右平移一個(gè)單位得,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來的4倍,縱坐標(biāo)不變,得令,,如圖當(dāng)時(shí),在有兩個(gè)不同的解∴,即.【點(diǎn)睛】本題考查(1)三角函數(shù)最值問題(2)三角函數(shù)的平移伸縮變換,考查計(jì)算能力,考查轉(zhuǎn)化與化歸思想,考查數(shù)形結(jié)合思想,屬于中等題型.20、(1);;(2)n的值為1.【解析】
(1)根據(jù)等比數(shù)列與等差數(shù)列,分別設(shè)公比與公差再用基本量法求解即可.(2)分別利用等差等比數(shù)列的求和公式求解得與,再代入整理求解二次方程即可.【詳解】解:(1)設(shè)等比數(shù)列的公比為q,由,,可得.∵,可得.故;設(shè)等差數(shù)列的公差為d,由,得,由,得,∴.故;(2)由是等差數(shù)列,且,得由是等比數(shù)列,且,得.可得.由,可得,整理得:,解得(舍)或.∴n的值
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年前列腺射頻治療儀系統(tǒng)行業(yè)深度研究分析報(bào)告
- 2025年船用裝飾材料項(xiàng)目投資可行性研究分析報(bào)告-20241226-205913
- 以租代買房合同范本
- 個(gè)人銷售欠款合同范本
- 關(guān)于公司承包合同范本
- 2025年度道路劃線施工與交通信號(hào)優(yōu)化合同范本
- 一汽解放車銷售合同范本
- 代理電商合同范本
- 代建房合同范本
- 新目標(biāo)(goforit)版初中英語(yǔ)九年級(jí)(全一冊(cè))全冊(cè)教案-unit
- 《如何做一名好教師》課件
- 2016-2023年婁底職業(yè)技術(shù)學(xué)院高職單招(英語(yǔ)/數(shù)學(xué)/語(yǔ)文)筆試歷年參考題庫(kù)含答案解析
- 貴陽(yáng)市2024年高三年級(jí)適應(yīng)性考試(一)一模英語(yǔ)試卷(含答案)
- 地理標(biāo)志專題通用課件
- 魚類和淡水生態(tài)系統(tǒng)
- 全國(guó)大學(xué)高考百科匯編之《哈爾濱工業(yè)大學(xué)》簡(jiǎn)介
- 學(xué)校安全教育教你如何遠(yuǎn)離危險(xiǎn)
- 【人教版】九年級(jí)化學(xué)上冊(cè)全冊(cè)單元測(cè)試卷【1-7單元合集】
- 中國(guó)傳統(tǒng)文化課件6八卦五行
- 《胃癌課件:病理和分子機(jī)制解析》
評(píng)論
0/150
提交評(píng)論