




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學(xué)年云南省通海三中高一數(shù)學(xué)第二學(xué)期期末檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中,已知,,則為()A.等腰直角三角形 B.等邊三角形C.銳角非等邊三角形 D.鈍角三角形2.過曲線的左焦點且和雙曲線實軸垂直的直線與雙曲線交于點A,B,若在雙曲線的虛軸所在的直線上存在—點C,使得,則雙曲線離心率e的最小值為()A. B. C. D.3.已知等差數(shù)列前n項的和為,,,則()A.25 B.26 C.27 D.284.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知asinA-bsinB=4csinC,cosA=-,則=A.6 B.5 C.4 D.35.先后拋擲枚均勻的硬幣,至少出現(xiàn)一次反面的概率是()A. B. C. D.6.已知直線3x?y+1=0的傾斜角為α,則A. B.C.? D.7.在中,角的對邊分別為,若,則A.無解 B.有一解C.有兩解 D.解的個數(shù)無法確定8.若x+2y=4,則2x+4y的最小值是()A.4 B.8 C.2 D.49.半徑為的半圓卷成一個圓錐,它的體積是()A. B. C. D.10.已知,若、、三點共線,則為()A. B. C. D.2二、填空題:本大題共6小題,每小題5分,共30分。11.若正四棱錐的所有棱長都相等,則該棱錐的側(cè)棱與底面所成的角的大小為____.12.已知,若數(shù)列滿足,,則等于________13.某公司租地建倉庫,每月土地占用費(萬元)與倉庫到車站的距離(公里)成反比.而每月庫存貨物的運費(萬元)與倉庫到車站的距離(公里)成正比.如果在距車站公里處建倉庫,這兩項費用和分別為萬元和萬元,由于地理位置原因.倉庫距離車站不超過公里.那么要使這兩項費用之和最小,最少的費用為_____萬元.14._______________.15.設(shè)變量滿足條件,則的最小值為___________16.據(jù)兩個變量、之間的觀測數(shù)據(jù)畫成散點圖如圖,這兩個變量是否具有線性相關(guān)關(guān)系_____(答是與否).三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)計算:;(2)化簡:.18.下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸)標準煤的幾組對照數(shù)據(jù).(1)請畫出上表數(shù)據(jù)的散點圖;(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出回歸方程;(3)已知該廠技改前噸甲產(chǎn)品的生產(chǎn)能耗為噸標準煤.試根據(jù)(2)求出的線性回歸方程,預(yù)測生產(chǎn)噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標準煤?(注:,)19.已知數(shù)列的前項和();(1)判斷數(shù)列是否為等差數(shù)列;(2)設(shè),求;(3)設(shè)(),,是否存在最小的自然數(shù),使得不等式對一切正整數(shù)總成立?如果存在,求出;如果不存在,說明理由;20.已知數(shù)列{}的首項.(1)求證:數(shù)列為等比數(shù)列;(2)記,若,求最大正整數(shù).21.解關(guān)于不等式:
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
已知第一個等式利用正弦定理化簡,再利用誘導(dǎo)公式及內(nèi)角和定理表示,根據(jù)兩角和與差的正弦函數(shù)公式化簡,得到A=B,第二個等式左邊前兩個因式利用積化和差公式變形,右邊利用二倍角的余弦函數(shù)公式化簡,將A+B=C,A﹣B=0代入計算求出cosC的值為0,進而確定出C為直角,即可確定出三角形形狀.【詳解】將已知等式2acosB=c,利用正弦定理化簡得:2sinAcosB=sinC,∵sinC=sin(A+B)=sinAcosB+cosAsinB,∴2sinAcosB=sinAcosB+cosAsinB,即sinAcosB﹣cosAsinB=sin(A﹣B)=0,∵A與B都為△ABC的內(nèi)角,∴A﹣B=0,即A=B,已知第二個等式變形得:sinAsinB(2﹣cosC)=(1﹣cosC)+=1﹣cosC,﹣[cos(A+B)﹣cos(A﹣B)](2﹣cosC)=1﹣cosC,∴﹣(﹣cosC﹣1)(2﹣cosC)=1﹣cosC,即(cosC+1)(2﹣cosC)=2﹣cosC,整理得:cos2C﹣2cosC=0,即cosC(cosC﹣2)=0,∴cosC=0或cosC=2(舍去),∴C=90°,則△ABC為等腰直角三角形.故選A.【點睛】此題考查了正弦定理,兩角和與差的正弦公式,二倍角的余弦函數(shù)公式,熟練掌握正弦定理是解本題的關(guān)鍵.2、C【解析】
設(shè)雙曲線的方程為:,(a>0,b>0),依題意知當(dāng)點C在坐標原點時,∠ACB最大,∠AOF1≥45°,利用tan∠AOF1,即可求得雙曲線離心率e的取值范圍.求出最小值.【詳解】設(shè)雙曲線的方程為:,(a>0,b>0),∵雙曲線關(guān)于x軸對稱,且直線AB⊥x軸,設(shè)左焦點F1(﹣c,0),則A(﹣c,),B(﹣c,),∵△ABC為直角三角形,依題意知,當(dāng)點C在坐標原點時,∠ACB最大,∴∠AOF1≥45°,∴tan∠AOF11,整理得:()21≥0,即e2﹣e﹣1≥0,解得:e.即雙曲線離心率e的最小值為:.故選:C【點睛】本題考查雙曲線的簡單性質(zhì),分析得到當(dāng)點C在坐標原點時,∠ACB最大是關(guān)鍵,得到∠AOF1≥45°是突破口,屬于中檔題.3、C【解析】
根據(jù)等差數(shù)列的求和與通項性質(zhì)求解即可.【詳解】等差數(shù)列前n項的和為,故.故.故選:C【點睛】本題主要考查了等差數(shù)列通項與求和的性質(zhì)運用,屬于基礎(chǔ)題.4、A【解析】
利用余弦定理推論得出a,b,c關(guān)系,在結(jié)合正弦定理邊角互換列出方程,解出結(jié)果.【詳解】詳解:由已知及正弦定理可得,由余弦定理推論可得,故選A.【點睛】本題考查正弦定理及余弦定理推論的應(yīng)用.5、D【解析】
先求得全是正面的概率,用減去這個概率求得至少出現(xiàn)一次反面的概率.【詳解】基本事件的總數(shù)為,全是正面的的事件數(shù)為,故全是正面的概率為,所以至少出現(xiàn)一次反面的概率為,故選D.【點睛】本小題主要考查古典概型概率計算,考查正難則反的思想,屬于基礎(chǔ)題.6、A【解析】
由題意利用直線的傾斜角和斜率求出tanα的值,再利用三角恒等變換,求出要求式子的值.【詳解】直線3x-y+1=0的傾斜角為α,∴tanα=3,
∴,
故選A.【點睛】本題主要考查直線的傾斜角和斜率,三角恒等變換,屬于中檔題.7、C【解析】
求得,根據(jù),即可判定有兩解,得到答案.【詳解】由題意,因為,又由,且,所以有兩解.【點睛】本題主要考查了三角形解的個數(shù)的判定,以及正弦定理的應(yīng)用,著重考查了推理與運算能力,屬于基礎(chǔ)題.8、B【解析】試題分析:由,當(dāng)且僅當(dāng)時,即等號成立,故選B.考點:基本不等式.9、A【解析】
根據(jù)圓錐的底面圓周長等于半圓弧長可計算出圓錐底面圓半徑,由勾股定理可計算出圓錐的高,再利用錐體體積公式可計算出圓錐的體積.【詳解】設(shè)圓錐的底面圓半徑為,高為,則圓錐底面圓周長為,得,,所以,圓錐的體積為,故選:A.【點睛】本題考查圓錐體積的計算,解題的關(guān)鍵就是要計算出圓錐底面圓的半徑和高,解題時要從已知條件列等式計算,并分析出一些幾何等量關(guān)系,考查空間想象能力與計算能力,屬于中等題.10、C【解析】
由平面向量中的三點共線問題可得:,由基本定理及線性運算可得:即得解.【詳解】因為,若,,三點共線則,解得,即即即即故選:【點睛】本題考查平面向量基本定理和共線定理,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
先作出線面角,再利用三角函數(shù)求解即可.【詳解】如圖,設(shè)正四棱錐的棱長為1,作在底面的射影,則為與底面所成角,為正方形的中心,,,,故答案為.【點睛】本題考查線面角,考查學(xué)生的計算能力,作出線面角是關(guān)鍵.屬于基礎(chǔ)題.12、【解析】
根據(jù)首項、遞推公式,結(jié)合函數(shù)的解析式,求出的值,可以發(fā)現(xiàn)數(shù)列是周期數(shù)列,求出周期,利用數(shù)列的周期性可以求出的值.【詳解】,所以數(shù)列是以5為周期的數(shù)列,因為20能被5整除,所以.【點睛】本題考查了數(shù)列的周期性,考查了數(shù)學(xué)運算能力.13、8.2【解析】
設(shè)倉庫與車站距離為公里,可得出、關(guān)于的函數(shù)關(guān)系式,然后利用雙勾函數(shù)的單調(diào)性求出的最小值.【詳解】設(shè)倉庫與車站距離為公里,由已知,.費用之和,求中,由雙勾函數(shù)的單調(diào)性可知,函數(shù)在區(qū)間上單調(diào)遞減,所以,當(dāng)時,取得最小值萬元,故答案為:.【點睛】本題考查利用雙勾函數(shù)求最值,解題的關(guān)鍵就是根據(jù)題意建立函數(shù)關(guān)系式,再利用基本不等式求最值時,若等號取不到時,可利用相應(yīng)的雙勾函數(shù)的單調(diào)性來求解,考查分析問題和解決問題的能力,屬于中等題.14、2【解析】
利用裂項求和法將化簡為,再求極限即可.【詳解】令...故答案為:【點睛】本題主要考查數(shù)列求和中的列項求和,同時考查了極限的求法,屬于中檔題.15、-1【解析】
根據(jù)線性規(guī)劃的基本方法求解即可.【詳解】畫出可行域有:因為.根據(jù)當(dāng)直線縱截距最大時,取得最小值.由圖易得在處取得最小值.故答案為:【點睛】本題主要考查了線性規(guī)劃的基本運用,屬于基礎(chǔ)題.16、否【解析】
根據(jù)散點圖的分布來判斷出兩個變量是否具有線性相關(guān)關(guān)系.【詳解】由散點圖可知,散點圖分布無任何規(guī)律,不在一條直線附近,所以,這兩個變量沒有線性相關(guān)關(guān)系,故答案為否.【點睛】本題考查利用散點圖判斷兩變量之間的線性相關(guān)關(guān)系,考查對散點圖概念的理解,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)-2(2)【解析】
(1)利用特殊角的三角函數(shù)值求得表達式的值.(2)利用誘導(dǎo)公式化簡所求表達式.【詳解】(1).(2).【點睛】本小題主要考查特殊角的三角函數(shù)值,考查誘導(dǎo)公式,屬于基礎(chǔ)題.18、(1)見解析.(2).(3)噸.【解析】
(1)直接描點即可(2)計算出的平均數(shù),,及,,利用公式即可求得,問題得解.(3)將代入可得,結(jié)合已知即可得解.【詳解】解:(1)把所給的四對數(shù)據(jù)寫成對應(yīng)的點的坐標,在坐標系中描出來,得到散點圖;(2)計算,,,,∴回歸方程的系數(shù)為:.,∴所求線性回歸方程為;(3)利用線性回歸方程計算時,,則,即比技改前降低了19.65噸.【點睛】本題主要考查了線性回歸方程的求法,考查計算能力,還考查了線性回歸方程的應(yīng)用,屬于中檔題.19、(1)否;(2);(3);【解析】
(1)根據(jù)數(shù)列中與的關(guān)系式,即可求解數(shù)列的通項公式,再結(jié)合等差數(shù)列的定義,即可求解;(2)由(1)知,求得當(dāng)時,,當(dāng)時,,利用等差數(shù)列的前項和公式,分類討論,即可求解.(3)由(1)得到當(dāng)時,,當(dāng)時,,結(jié)合裂項法,求得,即可求解.【詳解】(1)由題意,數(shù)列的前項和(),當(dāng)時,,當(dāng),所以數(shù)列的通項公式為,所以數(shù)列不是等差數(shù)列.(2)由(1)知,令,解得,所以當(dāng)時,,當(dāng)時,,①當(dāng)時,②當(dāng)時,綜上可得.(3)由(1)可得,當(dāng)時,,當(dāng)時,,,要使得不等式對一切正整數(shù)總成立,則,即.【點睛】本題主要考查了數(shù)列中與的關(guān)系式,等差數(shù)列的定義,數(shù)列的絕對值的和,以及“裂項法”的綜合應(yīng)用,著重考查了分析問題和解答問題的能力,以及推理與計算能力,試題有一定的綜合性,屬于中檔試題.20、(1)詳見解析;(2)99.【解析】
(1)利用數(shù)列遞推公式取倒數(shù),變形可得,從而可證數(shù)列為等比數(shù)列;(2)確定數(shù)列的通項,利用等比數(shù)列的求和
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 強排煙通風(fēng)合同范本
- 平房場地出租合同范本
- 家具置換合作合同范本
- 拍賣公司合同范本
- 過敏患者的護理
- 二零二五年度三年期勞動合同附加年終獎及股權(quán)激勵協(xié)議
- 二零二五年度車位產(chǎn)權(quán)轉(zhuǎn)讓及車位增值服務(wù)合作協(xié)議
- 二零二五年度餐飲業(yè)特色飲品研發(fā)與市場推廣合同
- 淘寶貸款合同范本
- 二零二五年度鋰電池技術(shù)專利授權(quán)使用合同
- 悟哪吒精神做英雄少年開學(xué)第一課主題班會課件-
- 2025年P(guān)EP人教版小學(xué)三年級英語下冊全冊教案
- 2025年春季學(xué)期教導(dǎo)處工作計劃及安排表
- 2024年江蘇省中小學(xué)生金鑰匙科技競賽(高中組)考試題庫(含答案)
- 新質(zhì)生產(chǎn)力的綠色意蘊
- 2024年個人信用報告(個人簡版)樣本(帶水印-可編輯)
- 16J914-1 公用建筑衛(wèi)生間
- 2024年長沙幼兒師范高等??茖W(xué)校高職單招(英語/數(shù)學(xué)/語文)筆試歷年參考題庫含答案解析
- 高中學(xué)生秧田式課堂座位管理探究
- 初中花城版八年級下冊音樂6.軍港之夜(15張)ppt課件
- FTTH組網(wǎng)邏輯圖
評論
0/150
提交評論