![山西省渾源縣第七中學2023-2024學年高一數(shù)學第二學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第1頁](http://file4.renrendoc.com/view5/M01/30/2F/wKhkGGZiMbaACmSKAAHWjZL8J4o095.jpg)
![山西省渾源縣第七中學2023-2024學年高一數(shù)學第二學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第2頁](http://file4.renrendoc.com/view5/M01/30/2F/wKhkGGZiMbaACmSKAAHWjZL8J4o0952.jpg)
![山西省渾源縣第七中學2023-2024學年高一數(shù)學第二學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第3頁](http://file4.renrendoc.com/view5/M01/30/2F/wKhkGGZiMbaACmSKAAHWjZL8J4o0953.jpg)
![山西省渾源縣第七中學2023-2024學年高一數(shù)學第二學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第4頁](http://file4.renrendoc.com/view5/M01/30/2F/wKhkGGZiMbaACmSKAAHWjZL8J4o0954.jpg)
![山西省渾源縣第七中學2023-2024學年高一數(shù)學第二學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第5頁](http://file4.renrendoc.com/view5/M01/30/2F/wKhkGGZiMbaACmSKAAHWjZL8J4o0955.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
山西省渾源縣第七中學2023-2024學年高一數(shù)學第二學期期末學業(yè)質(zhì)量監(jiān)測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.給出函數(shù)為常數(shù),且,,無論a取何值,函數(shù)恒過定點P,則P的坐標是A. B. C. D.2.函數(shù)的圖象如圖所示,則y的表達式為()A. B.C. D.3.在中,角,,的對邊分別為,,,且.則()A. B.或 C. D.4..在各項均為正數(shù)的等比數(shù)列中,若,則…等于()A.5 B.6 C.7 D.85.在棱長為2的正方體中,是內(nèi)(不含邊界)的一個動點,若,則線段的長的取值范圍為()A. B. C. D.6.函數(shù)的圖象的一條對稱軸方程是()A. B. C. D.7.已知是邊長為4的等邊三角形,為平面內(nèi)一點,則的最小值是()A. B. C. D.8.為得到函數(shù)的圖象,只需將函數(shù)圖象上的所有點()A.向右平移3個單位長度 B.向右平移個單位長度C.向左平移3個單位長度 D.向左平移個單位長度9.已知中,,,點是的中點,是邊上一點,則的最小值是()A. B. C. D.10.不等式>0的解集是()A.(-,0)(1,+) B.(-,0)C.(1,+) D.(0,1)二、填空題:本大題共6小題,每小題5分,共30分。11.已知是邊長為的等邊三角形,為邊上(含端點)的動點,則的取值范圍是_______.12.在中,,,,則的面積等于______.13.省農(nóng)科站要檢測某品牌種子的發(fā)芽率,計劃采用隨機數(shù)表法從該品牌粒種子中抽取粒進行檢測,現(xiàn)將這粒種子編號如下,,,,若從隨機數(shù)表第行第列的數(shù)開始向右讀,則所抽取的第粒種子的編號是.(下表是隨機數(shù)表第行至第行)84421753315724550688770474476721763350258392120676630163785916955567199810507175128673580744395238793321123429786456078252420744381551001342996602795414.空間一點到坐標原點的距離是_______.15.如果是奇函數(shù),則=.16.已知x,y滿足,則z=2x+y的最大值為_____.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.為了了解四川省各景點在大眾中的熟知度,隨機對歲的人群抽樣了人,回答問題“四川省有哪幾個著名的旅游景點?”統(tǒng)計結(jié)果如表.組號分組回答正確的人數(shù)回答正確的人數(shù)占本組的頻率第組第組第組第組第組(1)分別求出的值;(2)從第,,組回答正確的人中用分層抽樣的方法抽取人,求第,,組每組各抽取多少人?(3)通過直方圖求出年齡的眾數(shù),平均數(shù).18.函數(shù)在一個周期內(nèi)的圖象如圖所示,為圖象的最高點,、為圖象與軸的交點,且為正三角形.(1)求的值及函數(shù)的值域;(2)若,且,求的值.19.在中,內(nèi)角、、所對的邊分別為、、,且.(1)求;(2)若,,求.20.已知數(shù)列滿足,.(1)證明:數(shù)列為等差數(shù)列;(2)求數(shù)列的前項和.21.設(shè)數(shù)列是等差數(shù)列,其前n項和為;數(shù)列是等比數(shù)列,公比大于0,其前項和為.已知,,,.(1)求數(shù)列和數(shù)列的通項公式;(2),求正整數(shù)n的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】試題分析:因為恒過定點,所以函數(shù)恒過定點.故選D.考點:指數(shù)函數(shù)的性質(zhì).2、B【解析】
根據(jù)圖像最大值和最小值可得,根據(jù)最大值和最小值的所對應(yīng)的的值,可得周期,然后由,得到,代入點,結(jié)合的范圍,得到答案.【詳解】根據(jù)圖像可得,,即,根據(jù),得,所以,代入,得,所以,,所以,又因,所以得,所以得到,故選B.【點睛】本題考查根據(jù)函數(shù)圖像求正弦型函數(shù)的解析式,屬于簡單題.3、A【解析】
利用余弦定理和正弦定理化簡已知條件,求得的值,即而求得的大小.【詳解】由于,所以,由余弦定理和正弦定理得,即,由于是三角形的內(nèi)角,所以為正數(shù),所以,為三角形的內(nèi)角,所以.故選:A【點睛】本小題主要考查正弦定理和余弦定理邊角互化,考查三角形的內(nèi)角和定理,考查兩角和的正弦公式,屬于基礎(chǔ)題.4、C【解析】因為數(shù)列為等比數(shù)列,所以,所以.5、C【解析】
先判斷是正四面體,可得正四面體的棱長為,則的最大值為的長,的最小值是到平面的距離,結(jié)合不在三角形的邊上,計算可得結(jié)果.【詳解】由正方體的性質(zhì)可知,是正四面體,且正四面體的棱長為,在內(nèi),的最大值為,的最小值是到平面的距離,設(shè)在平面的射影為,則為正三角形的中心,,,的最小值為,又因為不在三角形的邊上,所以的范圍是,故選C.【點睛】本題主要考查正方體的性質(zhì)及立體幾何求最值,屬于難題.解決圓錐曲線中的最值問題一般有兩種方法:一是幾何意義以及平面幾何的有關(guān)結(jié)論來解決,非常巧妙;二是將立體幾何中最值問題轉(zhuǎn)化為函數(shù)問題,然后根據(jù)函數(shù)的特征選用參數(shù)法、配方法、判別式法、三角函數(shù)有界法、函數(shù)單調(diào)性法以及均值不等式法求解.6、A【解析】
由,得,,故選A.7、A【解析】
建立平面直角坐標系,表示出點的坐標,利用向量坐標運算和平面向量的數(shù)量積的運算,求得最小值,即可求解.【詳解】由題意,以中點為坐標原點,建立如圖所示的坐標系,則,設(shè),則,所以,所以當時,取得最小值為,故選A.【點睛】本題主要考查了平面向量數(shù)量積的應(yīng)用問題,根據(jù)條件建立坐標系,利用坐標法是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.8、B【解析】
先化簡得,根據(jù)函數(shù)圖像的變換即得解.【詳解】因為,所以函數(shù)圖象上的所有點向右平移個單位長度可得到函數(shù)的圖象.故選:B【點睛】本題主要考查三角函數(shù)圖像的變換,意在考查學生對該知識的理解掌握水平和分析推理能力.9、B【解析】
通過建系以及數(shù)量積的坐標運算,從而轉(zhuǎn)化為函數(shù)的最值問題.【詳解】根據(jù)題意,建立圖示直角坐標系,,,則,,,.設(shè),則,是邊上一點,當時,取得最小值,故選.【點睛】本題主要考察解析法在向量中的應(yīng)用,將平面向量的數(shù)量積轉(zhuǎn)化成了函數(shù)的最值問題.10、A【解析】
由題意可得,,求解即可.【詳解】,解得或,故解集為(-,0)(1,+),故選A.【點睛】本題考查了分式不等式的解法,考查了計算能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
取的中點為坐標原點,、所在直線分別為軸、軸建立平面直角坐標系,設(shè)點的坐標為,其中,利用數(shù)量積的坐標運算將轉(zhuǎn)化為有關(guān)的一次函數(shù)的值域問題,可得出的取值范圍.【詳解】如下圖所示:取的中點為坐標原點,、所在直線分別為軸、軸建立平面直角坐標系,則點、、,設(shè)點,其中,,,,因此,的取值范圍是,故答案為.【點睛】本題考查平面向量數(shù)量積的取值范圍,可以利用基底向量法以及坐標法求解,在建系時應(yīng)充分利用對稱性來建系,另外就是注意將動點所在的直線變?yōu)樽鴺溯S,可簡化運算,考查運算求解能力,屬于中等題.12、【解析】
先用余弦定理求得,從而得到,再利用正弦定理三角形面積公式求解.【詳解】因為在中,,,由余弦定理得,所以由正弦定理得故答案為:【點睛】本題主要考查正弦定理和余弦定理的應(yīng)用,還考查了運算求解的能力,屬于中檔題.13、1【解析】試題分析:依據(jù)隨機數(shù)表,抽取的編號依次為785,567,199,1.第四粒編號為1.考點:隨機數(shù)表.14、【解析】
直接運用空間兩點間距離公式求解即可.【詳解】由空間兩點距離公式可得:.【點睛】本題考查了空間兩點間距離公式,考查了數(shù)學運算能力.15、-2【解析】試題分析:∵,∴,∴,∴=-2考點:本題考查了三角函數(shù)的性質(zhì)點評:對于定義域為R的奇函數(shù)恒有f(0)=0.利用此結(jié)論可解決此類問題16、1.【解析】
先根據(jù)約束條件畫出可行域,再利用幾何意義求最值,表示直線在軸上的截距,只需求出可行域直線在軸上的截距最大值即可.【詳解】解:,在坐標系中畫出圖象,三條線的交點分別是,,,在中滿足的最大值是點,代入得最大值等于1.故答案為:1.【點睛】本題是考查線性規(guī)劃問題,本題主要考查了簡單的線性規(guī)劃,以及利用幾何意義求最值,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)第組抽取人,第組抽取人,第組抽取人;(3)40,.【解析】
(1)由頻率分布表得第四組人數(shù)為25人,由頻率分布直方圖得第四組的頻率為0.25,從而求出.由此求出各組人數(shù),進而能求出,,,的值.(2)由第2,3,4組回答正確的人分別有18、27、9人,從中用分層抽樣的方法抽取6人,由此能求出第2,3,4組每組各抽取多少人.(3)由頻率分布直方圖能求出年齡的眾數(shù),平均數(shù).【詳解】(1)由頻率分布表得第四組人數(shù)為:人,由頻率分布直方圖得第四組的頻率為,.第一組抽取的人數(shù)為:人,第二組抽取的人數(shù)為:人,第三組抽取的人數(shù)為:人,第五組抽取的人數(shù)為:人,.(2)第,,組回答正確的人分別有、、人,從中用分層抽樣的方法抽取人,第組抽取:人,第組抽?。喝?,第組抽取:人.(3)由頻率分布直方圖得:年齡的眾數(shù)為:,年齡的平均數(shù)為:【點睛】本題考查頻率、頻數(shù)、眾數(shù)、平均數(shù)的求法,考查分層抽樣的應(yīng)用,是基礎(chǔ)題,解題時要認真審題,注意頻率分布直方圖的性質(zhì)的合理運用.18、(2),函數(shù)的值域為;(2).【解析】
(1)將函數(shù)化簡整理,根據(jù)正三角形的高為,可求出,進而可得其值域;(2)由得到,再由求出,進而可求出結(jié)果.【詳解】(1)由已知可得,又正三角形的高為,則,所以函數(shù)的最小正周期,即,得,函數(shù)的值域為.(2)因為,由(1)得,即,由,得,即=,故.【點睛】本題主要考查三角函數(shù)的圖象和性質(zhì),熟記正弦函數(shù)的性質(zhì)即可求解,屬于基礎(chǔ)題型.19、(1)(2)【解析】
(1)利用正弦定理化簡為,再利用余弦定理得到答案.(2)先用和差公式計算,再利用正弦定理得到.【詳解】(1)由正弦定理,可化為,得,由余弦定理可得,有又由,可得.(2)由,由正弦定理有.【點睛】本題考查了正弦定理,余弦定理,和差公式,意在考查學生的計算能力.20、(1)證明見解析;(2)【解析】
(1)將已知條件湊配成,由此證得數(shù)列為等差數(shù)列.(2)由(1)求得數(shù)列的通項公式,進而求得的表達式,利用分組求和法求得.【詳解】(1)證明:∵∴又∵∴所以數(shù)列是首項為1,公差為2的等差數(shù)列;(2)由(1)知,,所以.所以【點睛】本小題主要考查根據(jù)遞推關(guān)系式證明等差數(shù)列,考查分組求和法,屬于中檔題.21
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年新型流動人衛(wèi)激光測距儀合作協(xié)議書
- 2025年羥乙基乙二胺合作協(xié)議書
- 2025年中高檔數(shù)控機床合作協(xié)議書
- 人教版 七年級英語下冊 UNIT 8 單元綜合測試卷(2025年春)
- 2021-2022學年河南省南陽市唐河縣七年級(上)期中地理試卷-附答案詳解
- 中國古代文學史1考試試題及答案
- 2025年個人簽訂合同委托(2篇)
- 2025年個人門面房屋租賃合同經(jīng)典版(三篇)
- 2025年產(chǎn)品維護服務(wù)合同機器或程序(2篇)
- 2025年個人車位出租協(xié)議經(jīng)典版(三篇)
- 小學生心理健康教育學情分析
- 2024年高考語文一輪復(fù)習:文言文文意概括簡答題知識清單 (二)
- 超級大腦:孩子六維能力培養(yǎng)指南
- 縱隔腫物的護理查房
- 新能源汽車概論題庫
- 設(shè)備維保的維修成本和維護費用
- 客運站員工安全生產(chǎn)教育培訓
- 口腔預(yù)防兒童宣教
- 綠城桃李春風推廣方案
- 顱腦損傷的生物標志物
- 2023高考語文實用類文本閱讀-新聞、通訊、訪談(含答案)
評論
0/150
提交評論