福建省廈門市雙十中學(xué)2023-2024學(xué)年數(shù)學(xué)高一下期末學(xué)業(yè)水平測試試題含解析_第1頁
福建省廈門市雙十中學(xué)2023-2024學(xué)年數(shù)學(xué)高一下期末學(xué)業(yè)水平測試試題含解析_第2頁
福建省廈門市雙十中學(xué)2023-2024學(xué)年數(shù)學(xué)高一下期末學(xué)業(yè)水平測試試題含解析_第3頁
福建省廈門市雙十中學(xué)2023-2024學(xué)年數(shù)學(xué)高一下期末學(xué)業(yè)水平測試試題含解析_第4頁
福建省廈門市雙十中學(xué)2023-2024學(xué)年數(shù)學(xué)高一下期末學(xué)業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

福建省廈門市雙十中學(xué)2023-2024學(xué)年數(shù)學(xué)高一下期末學(xué)業(yè)水平測試試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,在正方體中,,分別是中點,則異面直線與所成角大小為().A. B. C. D.2.已知a,b,c∈R,那么下列命題中正確的是()A.若a>b,則ac2>bc2B.若,則a>bC.若a3>b3且ab<0,則D.若a2>b2且ab>0,則3.設(shè),則比多了()項A. B. C. D.4.設(shè)直線l與平面平行,直線m在平面上,那么()A.直線l不平行于直線m B.直線l與直線m異面C.直線l與直線m沒有公共點 D.直線l與直線m不垂直5.在中,已知,且滿足,則的面積為()A.1 B.2 C. D.6.設(shè)且,則下列不等式成立的是()A. B. C. D.7.下列說法不正確的是()A.空間中,一組對邊平行且相等的四邊形是一定是平行四邊形;B.同一平面的兩條垂線一定共面;C.過直線上一點可以作無數(shù)條直線與這條直線垂直,且這些直線都在同一個平面內(nèi);D.過一條直線有且只有一個平面與已知平面垂直.8.正方體中,直線與所成角的余弦值為()A. B. C. D.9.已知,則的值等于()A.2 B. C. D.10.若程序框圖如圖所示,則該程序運行后輸出k的值是()A.5 B.6 C.7 D.8二、填空題:本大題共6小題,每小題5分,共30分。11.正三棱錐的底面邊長為2,側(cè)面均為直角三角形,則此三棱錐的體積為.12.已知數(shù)列中,,當時,,數(shù)列的前項和為_____.13.已知函數(shù)的最小正周期為,且的圖象過點,則方程所有解的和為________.14.已知函數(shù)是定義域為的偶函數(shù),當時,,若關(guān)于的方程有且僅有6個不同實數(shù)根,則實數(shù)的取值范圍為______.15.已知棱長都相等正四棱錐的側(cè)面積為,則該正四棱錐內(nèi)切球的表面積為________.16.對于正項數(shù)列,定義為的“光陰”值,現(xiàn)知某數(shù)列的“光陰”值為,則數(shù)列的通項公式為_____.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知.(1)設(shè),求滿足的實數(shù)的值;(2)若為上的奇函數(shù),試求函數(shù)的反函數(shù).18.已知直線截圓所得的弦長為.直線的方程為.(1)求圓的方程;(2)若直線過定點,點在圓上,且,為線段的中點,求點的軌跡方程.19.已知為等差數(shù)列,且(Ⅰ)求數(shù)列的通項公式;(Ⅱ)記的前項和為,若成等比數(shù)列,求正整數(shù)的值.20.在三棱錐中,平面平面,,,分別是棱,上的點(1)為的中點,求證:平面平面.(2)若,平面,求的值.21.設(shè)是一個公比為q的等比數(shù)列,且,,成等差數(shù)列.(1)求q;(2)若數(shù)列前4項的和,令,求數(shù)列的前n項和.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

通過中位線定理可以得到在正方體中,可以得到所以這樣找到異面直線與所成角,通過計算求解.【詳解】分別是中點,所以有而,因此異面直線與所成角為在正方體中,,所以,故本題選C.【點睛】本題考查了異面直線所成的角.2、C【解析】

根據(jù)不等式的性質(zhì),對A、B、C、D四個選項通過舉反例進行一一驗證.【詳解】A.若a>b,則ac2>bc2(錯),若c=0,則A不成立;B.若,則a>b(錯),若c<0,則B不成立;C.若a3>b3且ab<0,則(對),若a3>b3且ab<0,則D.若a2>b2且ab>0,則(錯),若,則D不成立.故選:C.【點睛】此題主要考查不等關(guān)系與不等式的性質(zhì)及其應(yīng)用,例如舉反例法求解比較簡單.兩個式子比較大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性質(zhì)得到大小關(guān)系,有時可以代入一些特殊的數(shù)據(jù)得到具體值,進而得到大小關(guān)系.3、C【解析】

可知中共有項,然后將中的項數(shù)減去中的項數(shù)即可得出答案.【詳解】,則中共有項,所以,比多了的項數(shù)為.故選:C.【點睛】本題考查數(shù)學(xué)歸納法的應(yīng)用,解題的關(guān)鍵就是計算出等式中的項數(shù),考查分析問題和解決問題的能力,屬于中等題.4、C【解析】

由題設(shè)條件,得到直線與直線異面或平行,進而得到答案.【詳解】由題意,因為直線與平面平行,直線在平面上,所以直線與直線異面或平行,即直線與直線沒有公共點,故選C.【點睛】本題主要考查了空間中直線與直線只見那的位置關(guān)系的判定及應(yīng)用,以及直線與平面平行的應(yīng)用,著重考查了推理與論證能力,屬于基礎(chǔ)題.5、D【解析】

根據(jù)正弦定理先進行化簡,然后根據(jù)余弦定理求出C的大小,結(jié)合三角形的面積公式進行計算即可.【詳解】在中,已知,∴由正弦定理得,即,∴==,即=.∵,∴的面積.故選D.【點睛】本題主要考查三角形面積的計算,結(jié)合正弦定理余弦定理進行化簡是解決本題的關(guān)鍵,屬于基礎(chǔ)題.6、A【解析】項,由得到,則,故項正確;項,當時,該不等式不成立,故項錯誤;項,當,時,,即不等式不成立,故項錯誤;項,當,時,,即不等式不成立,故項錯誤.綜上所述,故選.7、D【解析】一組對邊平行就決定了共面;同一平面的兩條垂線互相平行,因而共面;這些直線都在同一個平面內(nèi)即直線的垂面;把書本的書脊垂直放在桌上就明確了8、C【解析】

作出相關(guān)圖形,通過平行將異面直線所成角轉(zhuǎn)化為共面直線所成角.【詳解】作出相關(guān)圖形,由于,所以直線與所成角即為直線與所成角,由于為等邊三角形,于是所成角余弦值為,故答案選C.【點睛】本題主要考查異面直線所成角的余弦值,難度不大.9、D【解析】

根據(jù)分段函數(shù)的定義域以及函數(shù)解析式的關(guān)系,代值即可.【詳解】故選:D【點睛】本題考查了分段函數(shù)的求值問題,考查了學(xué)生綜合分析,數(shù)學(xué)運算能力,屬于基礎(chǔ)題.10、A【解析】試題分析:第一次循環(huán)運算:;第二次:;第三次:;第四次:;第五次:,這時符合條件輸出,故選A.考點:算法初步.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

由題意可得:該三棱錐的三條側(cè)棱兩兩垂直,長都為,所以三棱錐的體積.考點:三棱錐的體積公式.12、.【解析】

首先利用數(shù)列的關(guān)系式的變換求出數(shù)列為等差數(shù)列,進一步求出數(shù)列的通項公式,最后求出數(shù)列的和.【詳解】解:數(shù)列中,,當時,,整理得,即,∴數(shù)列是以為首項,6為公差的等差數(shù)列,故,所以,故答案為:.【點睛】本題主要考查定義法判斷等差數(shù)列,考查等差數(shù)列的前項和,考查運算能力和推理能力,屬于中檔題.13、【解析】

由周期求出,由圖象的所過點的坐標求得,【詳解】由題意,又,且,∴,,由得或,又,,∴或,或,兩根之和為.故答案為:.【點睛】本題考查求三角函數(shù)的解析式,考查解三角方程.掌握正切函數(shù)的性質(zhì)是解題關(guān)鍵.14、0<a≤或a.【解析】

運用偶函數(shù)的性質(zhì),作出函數(shù)f(x)的圖象,由5[f(x)]2﹣(5a+4)f(x)+4a=0,解得f(x)=a或f(x),結(jié)合圖象,分析有且僅有6個不同實數(shù)根的a的情況,即可得到a的范圍.【詳解】函數(shù)是定義域為的偶函數(shù),作出函數(shù)f(x)的圖象如圖:關(guān)于x的方程5[f(x)]2﹣(5a+4)f(x)+4a=0,解得f(x)=a或f(x),當0≤x≤2時,f(x)∈[0,],x>2時,f(x)∈(,).由,則f(x)有4個實根,由題意,只要f(x)=a有2個實根,則由圖象可得當0<a≤時,f(x)=a有2個實根,當a時,f(x)=a有2個實根.綜上可得:0<a≤或a.故答案為0<a≤或a..【點睛】本題考查函數(shù)的奇偶性和單調(diào)性的運用,考查方程和函數(shù)的轉(zhuǎn)化思想,運用數(shù)形結(jié)合的思想方法是解決的常用方法.15、【解析】

根據(jù)側(cè)面積求出正四棱錐的棱長,畫出組合體的截面圖,根據(jù)三角形的相似求得四棱錐內(nèi)切球的半徑,于是可得內(nèi)切球的表面積.【詳解】設(shè)正四棱錐的棱長為,則,解得.于是該正四棱錐內(nèi)切球的大圓是如圖△PMN的內(nèi)切圓,其中,.∴.設(shè)內(nèi)切圓的半徑為,由∽,得,即,解得,∴內(nèi)切球的表面積為.【點睛】與球有關(guān)的組合體問題,一種是內(nèi)切,一種是外接.解題時要認真分析圖形,明確切點和接點的位置,確定有關(guān)元素間的數(shù)量關(guān)系,并作出合適的截面圖,如球內(nèi)切于正方體,切點為正方體各個面的中心,正方體的棱長等于球的直徑;球外接于正方體,正方體的頂點均在球面上,正方體的體對角線長等于球的直徑.16、【解析】

根據(jù)的定義把帶入即可?!驹斀狻俊摺唷摺啖佟啖冖?②得∴故答案為:【點睛】本題主要考查了新定義題,解新定義題首先需要讀懂新定義,其次再根據(jù)題目的條件帶入新定義即可,屬于中等題。三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)把代入函數(shù)解析式,代入方程即可求解.(2)由函數(shù)奇偶性得,然后求得的解析式,分段求解反函數(shù)即可.【詳解】(1)當時,,由,得,即,解得.(2)為上的奇函數(shù),,則.,由,,得,;由,,得,.函數(shù)的反函數(shù)為.【點睛】本題主要考查了函數(shù)的解析式及求法,考查了反函數(shù)的求法,屬于中檔題.18、(1);(2).【解析】

(1)利用點到直線的距離公式得到圓心到直線的距離,利用直線截圓得到的弦長公式可得半徑r,從而得到圓的方程;(2)由已知可得直線l1恒過定點P(1,1),設(shè)MN的中點Q(x,y),由已知可得,利用兩點間的距離公式化簡可得答案.【詳解】(1)根據(jù)題意,圓的圓心為(0,0),半徑為r,則圓心到直線l的距離,若直線截圓所得的弦長為,則有,解可得,則圓的方程為;(2)直線l1的方程為,即,則有,解得,即P的坐標為(1,1),點在圓上,且,為線段的中點,則,設(shè)MN的中點為Q(x,y),則,即,化簡可得:即為點Q的軌跡方程.【點睛】本題考查直線與圓的位置關(guān)系,考查直線被圓截得的弦長公式的應(yīng)用,考查直線恒過定點問題和軌跡問題,屬于中檔題.19、:(Ⅰ)(Ⅱ)【解析】試題分析:(Ⅰ)設(shè)等差數(shù)列{an}的公差等于d,則由題意可得,解得a1=1,d=1,從而得到{an}的通項公式.(Ⅱ)由(Ⅰ)可得{an}的前n項和為Sn==n(n+1),再由=a1Sk+1,求得正整數(shù)k的值.解:(Ⅰ)設(shè)等差數(shù)列{an}的公差等于d,則由題意可得,解得a1=1,d=1.∴{an}的通項公式an=1+(n﹣1)1=1n.(Ⅱ)由(Ⅰ)可得{an}的前n項和為Sn==n(n+1).∵若a1,ak,Sk+1成等比數(shù)列,∴=a1Sk+1,∴4k1=1(k+1)(k+3),k="2"或k=﹣1(舍去),故k=2.考點:等比數(shù)列的性質(zhì);等差數(shù)列的通項公式.20、(1)證明見解析;(2)【解析】

(1)根據(jù)等腰三角形的性質(zhì),證得,由面面垂直的性質(zhì)定理,證得平面,進而證得平面平面.(2)根據(jù)線面平行的性質(zhì)定理,證得,平行線分線段成比例,由此求得的值.【詳解】(1),為的中點,所以.又因為平面平面,平面平面,且平面,所以平面,又平面,所以平面平面.(2)∵平面,面,面面∴,∴.【點睛】本小題主要考查面面垂直的判定定理和性質(zhì)定理,考查線面平行的性質(zhì)定理,考查空間想象能力和邏輯推理能力,屬于中檔題.21、(1);(2)答案不唯一,詳見解析.【解析】

(1)運用等差中項性質(zhì)和等比數(shù)列的通項公式,解方程可得公比;(2)討論公比,結(jié)合等差數(shù)列和等比數(shù)列的求和公式,以及錯

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論