




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
福建省三明市普通高中2024年高考數(shù)學(xué)三模試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,,,,則()A. B. C. D.2.下列函數(shù)中,既是奇函數(shù),又是上的單調(diào)函數(shù)的是()A. B.C. D.3.已知為虛數(shù)單位,復(fù)數(shù)滿足,則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.已知,若方程有唯一解,則實(shí)數(shù)的取值范圍是()A. B.C. D.5.已知函數(shù),則方程的實(shí)數(shù)根的個數(shù)是()A. B. C. D.6.如圖,點(diǎn)E是正方體ABCD-A1B1C1D1的棱DD1的中點(diǎn),點(diǎn)F,M分別在線段AC,BD1(不包含端點(diǎn))上運(yùn)動,則()A.在點(diǎn)F的運(yùn)動過程中,存在EF//BC1B.在點(diǎn)M的運(yùn)動過程中,不存在B1M⊥AEC.四面體EMAC的體積為定值D.四面體FA1C1B的體積不為定值7.在三棱錐中,,,則三棱錐外接球的表面積是()A. B. C. D.8.函數(shù)的部分圖象如圖所示,則的單調(diào)遞增區(qū)間為()A. B.C. D.9.已知三棱柱()A. B. C. D.10.已知函數(shù)的定義域?yàn)?,且,?dāng)時,.若,則函數(shù)在上的最大值為()A.4 B.6 C.3 D.811.已知直線,,則“”是“”的A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件12.在各項(xiàng)均為正數(shù)的等比數(shù)列中,若,則()A. B.6 C.4 D.5二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的左、右焦點(diǎn)分別為為雙曲線上任一點(diǎn),且的最小值為,則該雙曲線的離心率是__________.14.記復(fù)數(shù)z=a+bi(i為虛數(shù)單位)的共軛復(fù)數(shù)為,已知z=2+i,則_____.15.三棱柱中,,側(cè)棱底面,且三棱柱的側(cè)面積為.若該三棱柱的頂點(diǎn)都在同一個球的表面上,則球的表面積的最小值為_____.16.某外商計(jì)劃在個候選城市中投資個不同的項(xiàng)目,且在同一個城市投資的項(xiàng)目不超過個,則該外商不同的投資方案有____種.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè),函數(shù),其中為自然對數(shù)的底數(shù).(1)設(shè)函數(shù).①若,試判斷函數(shù)與的圖像在區(qū)間上是否有交點(diǎn);②求證:對任意的,直線都不是的切線;(2)設(shè)函數(shù),試判斷函數(shù)是否存在極小值,若存在,求出的取值范圍;若不存在,請說明理由.18.(12分)已知橢圓,左、右焦點(diǎn)為,點(diǎn)為上任意一點(diǎn),若的最大值為3,最小值為1.(1)求橢圓的方程;(2)動直線過點(diǎn)與交于兩點(diǎn),在軸上是否存在定點(diǎn),使成立,說明理由.19.(12分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(Ⅰ)設(shè)直線與曲線交于,兩點(diǎn),求;(Ⅱ)若點(diǎn)為曲線上任意一點(diǎn),求的取值范圍.20.(12分)某網(wǎng)絡(luò)商城在年月日開展“慶元旦”活動,當(dāng)天各店鋪銷售額破十億,為了提高各店鋪銷售的積極性,采用搖號抽獎的方式,抽取了家店鋪進(jìn)行紅包獎勵.如圖是抽取的家店鋪元旦當(dāng)天的銷售額(單位:千元)的頻率分布直方圖.(1)求抽取的這家店鋪,元旦當(dāng)天銷售額的平均值;(2)估計(jì)抽取的家店鋪中元旦當(dāng)天銷售額不低于元的有多少家;(3)為了了解抽取的各店鋪的銷售方案,銷售額在和的店鋪中共抽取兩家店鋪進(jìn)行銷售研究,求抽取的店鋪銷售額在中的個數(shù)的分布列和數(shù)學(xué)期望.21.(12分)設(shè)為坐標(biāo)原點(diǎn),動點(diǎn)在橢圓:上,該橢圓的左頂點(diǎn)到直線的距離為.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若橢圓外一點(diǎn)滿足,平行于軸,,動點(diǎn)在直線上,滿足.設(shè)過點(diǎn)且垂直的直線,試問直線是否過定點(diǎn)?若過定點(diǎn),請寫出該定點(diǎn),若不過定點(diǎn)請說明理由.22.(10分)記無窮數(shù)列的前項(xiàng)中最大值為,最小值為,令,則稱是“極差數(shù)列”.(1)若,求的前項(xiàng)和;(2)證明:的“極差數(shù)列”仍是;(3)求證:若數(shù)列是等差數(shù)列,則數(shù)列也是等差數(shù)列.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
令,求,利用導(dǎo)數(shù)判斷函數(shù)為單調(diào)遞增,從而可得,設(shè),利用導(dǎo)數(shù)證出為單調(diào)遞減函數(shù),從而證出,即可得到答案.【詳解】時,令,求導(dǎo),,故單調(diào)遞增:∴,當(dāng),設(shè),,又,,即,故.故選:D【點(diǎn)睛】本題考查了作差法比較大小,考查了構(gòu)造函數(shù)法,利用導(dǎo)數(shù)判斷式子的大小,屬于中檔題.2、C【解析】
對選項(xiàng)逐個驗(yàn)證即得答案.【詳解】對于,,是偶函數(shù),故選項(xiàng)錯誤;對于,,定義域?yàn)椋谏喜皇菃握{(diào)函數(shù),故選項(xiàng)錯誤;對于,當(dāng)時,;當(dāng)時,;又時,.綜上,對,都有,是奇函數(shù).又時,是開口向上的拋物線,對稱軸,在上單調(diào)遞增,是奇函數(shù),在上是單調(diào)遞增函數(shù),故選項(xiàng)正確;對于,在上單調(diào)遞增,在上單調(diào)遞增,但,在上不是單調(diào)函數(shù),故選項(xiàng)錯誤.故選:.【點(diǎn)睛】本題考查函數(shù)的基本性質(zhì),屬于基礎(chǔ)題.3、B【解析】
求出復(fù)數(shù),得出其對應(yīng)點(diǎn)的坐標(biāo),確定所在象限.【詳解】由題意,對應(yīng)點(diǎn)坐標(biāo)為,在第二象限.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的幾何意義,考查復(fù)數(shù)的除法運(yùn)算,屬于基礎(chǔ)題.4、B【解析】
求出的表達(dá)式,畫出函數(shù)圖象,結(jié)合圖象以及二次方程實(shí)根的分布,求出的范圍即可.【詳解】解:令,則,則,故,如圖示:由,得,函數(shù)恒過,,由,,可得,,,若方程有唯一解,則或,即或;當(dāng)即圖象相切時,根據(jù),,解得舍去),則的范圍是,故選:.【點(diǎn)睛】本題考查函數(shù)的零點(diǎn)問題,考查函數(shù)方程的轉(zhuǎn)化思想和數(shù)形結(jié)合思想,屬于中檔題.5、D【解析】
畫出函數(shù),將方程看作交點(diǎn)個數(shù),運(yùn)用圖象判斷根的個數(shù).【詳解】畫出函數(shù)令有兩解,則分別有3個,2個解,故方程的實(shí)數(shù)根的個數(shù)是3+2=5個故選:D【點(diǎn)睛】本題綜合考查了函數(shù)的圖象的運(yùn)用,分類思想的運(yùn)用,數(shù)學(xué)結(jié)合的思想判斷方程的根,難度較大,屬于中檔題.6、C【解析】
采用逐一驗(yàn)證法,根據(jù)線線、線面之間的關(guān)系以及四面體的體積公式,可得結(jié)果.【詳解】A錯誤由平面,//而與平面相交,故可知與平面相交,所以不存在EF//BC1B錯誤,如圖,作由又平面,所以平面又平面,所以由//,所以,平面所以平面,又平面所以,所以存在C正確四面體EMAC的體積為其中為點(diǎn)到平面的距離,由//,平面,平面所以//平面,則點(diǎn)到平面的距離即點(diǎn)到平面的距離,所以為定值,故四面體EMAC的體積為定值錯誤由//,平面,平面所以//平面,則點(diǎn)到平面的距離即為點(diǎn)到平面的距離,所以為定值所以四面體FA1C1B的體積為定值故選:C【點(diǎn)睛】本題考查線面、線線之間的關(guān)系,考驗(yàn)分析能力以及邏輯推理能力,熟練線面垂直與平行的判定定理以及性質(zhì)定理,中檔題.7、B【解析】
取的中點(diǎn),連接、,推導(dǎo)出,設(shè)設(shè)球心為,和的中心分別為、,可得出平面,平面,利用勾股定理計(jì)算出球的半徑,再利用球體的表面積公式可得出結(jié)果.【詳解】取的中點(diǎn),連接、,由和都是正三角形,得,,則,則,由勾股定理的逆定理,得.設(shè)球心為,和的中心分別為、.由球的性質(zhì)可知:平面,平面,又,由勾股定理得.所以外接球半徑為.所以外接球的表面積為.故選:B.【點(diǎn)睛】本題考查三棱錐外接球表面積的計(jì)算,解題時要分析幾何體的結(jié)構(gòu),找出球心的位置,并以此計(jì)算出球的半徑長,考查推理能力與計(jì)算能力,屬于中等題.8、D【解析】
由圖象可以求出周期,得到,根據(jù)圖象過點(diǎn)可求,根據(jù)正弦型函數(shù)的性質(zhì)求出單調(diào)增區(qū)間即可.【詳解】由圖象知,所以,,又圖象過點(diǎn),所以,故可取,所以令,解得所以函數(shù)的單調(diào)遞增區(qū)間為故選:.【點(diǎn)睛】本題主要考查了三角函數(shù)的圖象與性質(zhì),利用“五點(diǎn)法”求函數(shù)解析式,屬于中檔題.9、C【解析】因?yàn)橹比庵?,AB=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC為過底面ABC的截面圓的直徑.取BC中點(diǎn)D,則OD⊥底面ABC,則O在側(cè)面BCC1B1內(nèi),矩形BCC1B1的對角線長即為球直徑,所以2R==13,即R=10、A【解析】
根據(jù)所給函數(shù)解析式滿足的等量關(guān)系及指數(shù)冪運(yùn)算,可得;利用定義可證明函數(shù)的單調(diào)性,由賦值法即可求得函數(shù)在上的最大值.【詳解】函數(shù)的定義域?yàn)?,且,則;任取,且,則,故,令,,則,即,故函數(shù)在上單調(diào)遞增,故,令,,故,故函數(shù)在上的最大值為4.故選:A.【點(diǎn)睛】本題考查了指數(shù)冪的運(yùn)算及化簡,利用定義證明抽象函數(shù)的單調(diào)性,賦值法在抽象函數(shù)求值中的應(yīng)用,屬于中檔題.11、C【解析】
先得出兩直線平行的充要條件,根據(jù)小范圍可推導(dǎo)出大范圍,可得到答案.【詳解】直線,,的充要條件是,當(dāng)a=2時,化簡后發(fā)現(xiàn)兩直線是重合的,故舍去,最終a=-1.因此得到“”是“”的充分必要條件.故答案為C.【點(diǎn)睛】判斷充要條件的方法是:①若p?q為真命題且q?p為假命題,則命題p是命題q的充分不必要條件;②若p?q為假命題且q?p為真命題,則命題p是命題q的必要不充分條件;③若p?q為真命題且q?p為真命題,則命題p是命題q的充要條件;④若p?q為假命題且q?p為假命題,則命題p是命題q的即不充分也不必要條件.⑤判斷命題p與命題q所表示的范圍,再根據(jù)“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關(guān)系.12、D【解析】
由對數(shù)運(yùn)算法則和等比數(shù)列的性質(zhì)計(jì)算.【詳解】由題意.故選:D.【點(diǎn)睛】本題考查等比數(shù)列的性質(zhì),考查對數(shù)的運(yùn)算法則.掌握等比數(shù)列的性質(zhì)是解題關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)雙曲線方程,設(shè)及,將代入雙曲線方程并化簡可得,由題意的最小值為,結(jié)合平面向量數(shù)量積的坐標(biāo)運(yùn)算化簡,即可求得的值,進(jìn)而求得離心率即可.【詳解】設(shè)點(diǎn),,則,即,∵,,,當(dāng)時,等號成立,∴,∴,∴.故答案為:.【點(diǎn)睛】本題考查了雙曲線與向量的綜合應(yīng)用,由平面向量數(shù)量積的最值求離心率,屬于中檔題.14、3﹣4i【解析】
計(jì)算得到z2=(2+i)2=3+4i,再計(jì)算得到答案.【詳解】∵z=2+i,∴z2=(2+i)2=3+4i,則.故答案為:3﹣4i.【點(diǎn)睛】本題考查了復(fù)數(shù)的運(yùn)算,共軛復(fù)數(shù),意在考查學(xué)生的計(jì)算能力.15、【解析】
分析題意可知,三棱柱為正三棱柱,所以三棱柱的中心即為外接球的球心,設(shè)棱柱的底面邊長為,高為,則三棱柱的側(cè)面積為,球的半徑表示為,再由重要不等式即可得球表面積的最小值【詳解】如下圖,∵三棱柱為正三棱柱∴設(shè),∴三棱柱的側(cè)面積為∴又外接球半徑∴外接球表面積.故答案為:【點(diǎn)睛】考查學(xué)生對幾何體的正確認(rèn)識,能通過題意了解到題目傳達(dá)的意思,培養(yǎng)學(xué)生空間想象力,能夠利用題目條件,畫出圖形,尋找外接球的球心以及半徑,屬于中檔題16、60【解析】試題分析:每個城市投資1個項(xiàng)目有種,有一個城市投資2個有種,投資方案共種.考點(diǎn):排列組合.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)①函數(shù)與的圖象在區(qū)間上有交點(diǎn);②證明見解析;(2)且;【解析】
(1)①令,結(jié)合函數(shù)零點(diǎn)的判定定理判斷即可;②設(shè)切點(diǎn)橫坐標(biāo)為,求出切線方程,得到,根據(jù)函數(shù)的單調(diào)性判斷即可;(2)求出的解析式,通過討論的范圍,求出函數(shù)的單調(diào)區(qū)間,確定的范圍即可.【詳解】解:(1)①當(dāng)時,函數(shù),令,,則,,故,又函數(shù)在區(qū)間上的圖象是不間斷曲線,故函數(shù)在區(qū)間上有零點(diǎn),故函數(shù)與的圖象在區(qū)間上有交點(diǎn);②證明:假設(shè)存在,使得直線是曲線的切線,切點(diǎn)橫坐標(biāo)為,且,則切線在點(diǎn)切線方程為,即,從而,且,消去,得,故滿足等式,令,所以,故函數(shù)在和上單調(diào)遞增,又函數(shù)在時,故方程有唯一解,又,故不存在,即證;(2)由得,,,令,則,,當(dāng)時,遞減,故當(dāng)時,,遞增,當(dāng)時,,遞減,故在處取得極大值,不合題意;時,則在遞減,在,遞增,①當(dāng)時,,故在遞減,可得當(dāng)時,,當(dāng)時,,,易證,令,,令,故,則,故在遞增,則,即時,,故在,內(nèi)存在,使得,故在,上遞減,在,遞增,故在處取得極小值.②由(1)知,,故在遞減,在遞增,故時,,遞增,不合題意;③當(dāng)時,,當(dāng),時,,遞減,當(dāng)時,,遞增,故在處取極小值,符合題意,綜上,實(shí)數(shù)的范圍是且.【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性,最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,轉(zhuǎn)化思想,屬于難題.18、(1)(2)存在;詳見解析【解析】
(1)由橢圓的性質(zhì)得,解得后可得,從而得橢圓方程;(2)設(shè),當(dāng)直線斜率存在時,設(shè)為,代入橢圓方程,整理后應(yīng)用韋達(dá)定理得,代入=0由恒成立問題可求得.驗(yàn)證斜率不存在時也適合即得.【詳解】解:(1)由題易知解得,所以橢圓方程為(2)設(shè)當(dāng)直線斜率存在時,設(shè)為與橢圓方程聯(lián)立得,顯然所以因?yàn)榛喗獾眉此源藭r存在定點(diǎn)滿足題意當(dāng)直線斜率不存在時,顯然也滿足綜上所述,存在定點(diǎn),使成立【點(diǎn)睛】本題考查求橢圓的標(biāo)準(zhǔn)方程,考查直線與橢圓相交問題中的定點(diǎn)問題,解題方法是設(shè)而不求的思想方法.設(shè)而不求思想方法是直線與圓錐曲線相交問題中常用方法,只要涉及交點(diǎn)坐標(biāo),一般就用此法.19、(Ⅰ)6(Ⅱ)【解析】
(Ⅰ)化簡得到直線的普通方程化為,,是以點(diǎn)為圓心,為半徑的圓,利用垂徑定理計(jì)算得到答案.(Ⅱ)設(shè),則,得到范圍.【詳解】(Ⅰ)由題意可知,直線的普通方程化為,曲線的極坐標(biāo)方程變形為,所以的普通方程分別為,是以點(diǎn)為圓心,為半徑的圓,設(shè)點(diǎn)到直線的距離為,則,所以.(Ⅱ)的標(biāo)準(zhǔn)方程為,所以參數(shù)方程為(為參數(shù)),設(shè),,因?yàn)?,所以,所?【點(diǎn)睛】本題考查了參數(shù)方程,極坐標(biāo)方程,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.20、(1)元;(2)32家;(3)分布列見解析;【解析】
(1)根據(jù)頻率分布直方圖求出各組頻率,再由平均數(shù)公式,即可求解;(2)求出的頻率即可;(3)中的個數(shù)的所有可能取值為,,,求出可能值的概率,得到分布列,由期望公式即可求解.【詳解】(1)頻率分布直方圖銷售額的平均值為千元,所以銷售額的平均值為元;(2)不低于元的有家(3)銷售額在的店鋪有家,銷售額在的店鋪有家.選取兩家,設(shè)銷售額在的有家.則的所有可能取值為,,.,,所以的分布列為數(shù)學(xué)期望【點(diǎn)睛】本題考查應(yīng)用頻率分布直方圖求平均數(shù)和頻數(shù),考查離散型隨機(jī)變量的分布列和期望,屬于基礎(chǔ)題.21、(1);(2)見解析【解析】
(1)根據(jù)點(diǎn)到直線的距離公式可求出a的值,即可得橢圓方程;(2)由題意M(x0,y0),N(x0,y1),P(2,t),根據(jù),可得y1=2y0,由,可得2x0+2y0t=6,再根據(jù)向量的運(yùn)算可得,即可證明.【詳解】(1)左頂點(diǎn)A的坐標(biāo)為(﹣a,0),∵=,∴|a﹣5|=3,解得a=2或a=8(舍去),∴橢圓C的標(biāo)準(zhǔn)方程為+y2=1,(2)由題意M(x0,y0),N(x0,y1),P(2,t),則依題意可知y1≠y0,得(x0﹣2x0,y1﹣2y0)(0,y
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建筑設(shè)計(jì)造價咨詢合同
- 鐵路旅客運(yùn)輸服務(wù)鐵路客運(yùn)服務(wù)崗位與系統(tǒng)課件
- 《動漫藝術(shù)探析》課件
- 雙語客運(yùn)值班員紅十字藥箱課件
- 防水瀝青混凝土施工方案
- 餐廳裝修施工合同范本
- 購銷合同電子產(chǎn)品購銷合同范本
- 世紀(jì)英才文化課件查找途徑
- 住建部工程合同示范文本
- 四川大學(xué)《景觀規(guī)劃設(shè)計(jì)及其理論》2023-2024學(xué)年第二學(xué)期期末試卷
- 2024旅行社與境外旅游機(jī)構(gòu)入境合作框架協(xié)議范本3篇
- 【八年級下冊地理中圖北京版】期中真題必刷卷A-【期中真題必刷卷】(北京專用)(原卷版)
- 《人文地理學(xué)》宗教地理與宗教景觀
- 《服裝陳列展示設(shè)計(jì)》課件
- 110kVXX變電站預(yù)試定檢施工方案試卷教案
- 《基金管理人》課件2
- 舞蹈培訓(xùn)機(jī)構(gòu)校長聘用合同
- 物流行業(yè)無人機(jī)配送方案
- 風(fēng)機(jī)事故完整版本
- 開工安全交底
- 北京市2020-2024年高考生物復(fù)習(xí)分類匯編:基因工程(含詳解)
評論
0/150
提交評論