2024屆江蘇省馬壩中學高一數(shù)學第二學期期末經(jīng)典模擬試題含解析_第1頁
2024屆江蘇省馬壩中學高一數(shù)學第二學期期末經(jīng)典模擬試題含解析_第2頁
2024屆江蘇省馬壩中學高一數(shù)學第二學期期末經(jīng)典模擬試題含解析_第3頁
2024屆江蘇省馬壩中學高一數(shù)學第二學期期末經(jīng)典模擬試題含解析_第4頁
2024屆江蘇省馬壩中學高一數(shù)學第二學期期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2024屆江蘇省馬壩中學高一數(shù)學第二學期期末經(jīng)典模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中,已知、、分別是角、、的對邊,若,則的形狀為A.等腰三角形 B.直角三角形 C.等腰直角三角形 D.等腰三角形或直角三角形2.已知向量是單位向量,=(3,4),且在方向上的投影為,則A.36 B.21 C.9 D.63.函數(shù)的單調(diào)增區(qū)間是()A. B.C. D.4.等差數(shù)列滿足,則其前10項之和為()A.-9 B.-15 C.15 D.5.已知函數(shù),點A、B分別為圖象在y軸右側(cè)的第一個最高點和第一個最低點,O為坐標原點,若△OAB為銳角三角形,則的取值范圍為()A. B. C. D.6.若圓與圓相切,則實數(shù)()A.9 B.-11 C.-11或-9 D.9或-117.設△ABC的內(nèi)角A、B、C所對邊分別為a、b、c,若a=3,b=,A=,則B=()A. B.或 C. D.或8.已知點A(1,0),B(0,1),C(–2,–3),則△ABC的面積為A.3 B.2 C.1 D.9.如圖,長方體的體積為,E為棱上的點,且,三棱錐E-BCD的體積為,則=()A. B. C. D.10.一個圓柱的母線長為5,底面半徑為2,則圓柱的軸截面的面積是()A.10 B.20 C.30 D.40二、填空題:本大題共6小題,每小題5分,共30分。11.對于正項數(shù)列,定義為的“光陰”值,現(xiàn)知某數(shù)列的“光陰”值為,則數(shù)列的通項公式為_____.12.已知實數(shù)滿足條件,則的最大值是________.13.空間一點到坐標原點的距離是_______.14.如圖,在中,,,點D為BC的中點,設,.的值為___________.15.已知函數(shù),(常數(shù)、),若當且僅當時,函數(shù)取得最大值1,則實數(shù)的數(shù)值為______.16.如圖,已知扇形和,為的中點.若扇形的面積為1,則扇形的面積為______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù)(1)求函數(shù)的最小正周期;(2)若,且,求的值.18.設平面三點、、.(1)試求向量的模;(2)若向量與的夾角為,求;(3)求向量在上的投影.19.設全集是實數(shù)集,集合,.(1)若,求實數(shù)的取值范圍;(2)若,求.20.已知數(shù)列中,,.(1)求數(shù)列的通項公式:(2)設,求數(shù)列的通項公式及其前項和.21.已知函數(shù),且函數(shù)是偶函數(shù),設(1)求的解析式;(2)若不等式≥0在區(qū)間(1,e2]上恒成立,求實數(shù)的取值范圍;(3)若方程有三個不同的實數(shù)根,求實數(shù)的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

由,利用正弦定理可得,進而可得sin2A=sin2B,由此可得結(jié)論.【詳解】∵,∴由正弦定理可得∴sinAcosA=sinBcosB∴sin2A=sin2B∴2A=2B或2A+2B=π∴A=B或A+B=∴△ABC的形狀是等腰三角形或直角三角形故選D.【點睛】判斷三角形形狀的常見方法是:(1)通過正弦定理和余弦定理,化邊為角,利用三角變換得出三角形內(nèi)角之間的關系進行判斷;(2)利用正弦定理、余弦定理,化角為邊,通過代數(shù)恒等變換,求出邊與邊之間的關系進行判斷;(3)根據(jù)余弦定理確定一個內(nèi)角為鈍角進而知其為鈍角三角形.2、D【解析】

根據(jù)公式把模轉(zhuǎn)化為數(shù)量積,展開后再根據(jù)和已知條件計算.【詳解】因為在方向上的投影為,所以,.故選D.【點睛】本題主要考查向量模有關的計算,常用公式有,.3、D【解析】

化簡函數(shù)可得y=2sin(2x),把“2x”作為一個整體,再根據(jù)正弦函數(shù)的單調(diào)增區(qū)間,求出x的范圍,即是所求函數(shù)的增區(qū)間.【詳解】,由2kπ≤2x2kπ得,kπx≤kπ(k∈z),∴函數(shù)的單調(diào)增區(qū)間是[kπ,kπ](k∈z),故選D.【點睛】本題考查了正弦函數(shù)的單調(diào)性應用,一般的做法是利用整體思想,根據(jù)正弦函數(shù)(余弦函數(shù))的性質(zhì)進行求解.4、D【解析】由已知(a4+a7)2=9,所以a4+a7=±3,從而a1+a10=±3.所以S10=×10=±15.故選D.5、B【解析】

△OAB為銳角三角形等價于,再運算即可得解.【詳解】解:由題意可得,,由△OAB為銳角三角形,則,即,解得:,即的取值范圍為,故選:B.【點睛】本題考查了三角函數(shù)圖像的性質(zhì),重點考查了向量數(shù)量積的運算,屬中檔題.6、D【解析】

分別討論兩圓內(nèi)切或外切,圓心距和半徑之間的關系即可得出結(jié)果.【詳解】圓的圓心坐標為,半徑;圓的圓心坐標為,半徑,討論:當圓與圓外切時,,所以;當圓與圓內(nèi)切時,,所以,綜上,或.【點睛】本題主要考查圓與圓位置關系,由兩圓相切求參數(shù)的值,屬于基礎題型.7、A【解析】

由已知利用正弦定理可求的值,利用大邊對大角可求為銳角,利用特殊角的三角函數(shù)值,即可得解.【詳解】由題意知,由正弦定理,可得==,又因為,可得B為銳角,所以.故選A.【點睛】本題主要考查了正弦定理,大邊對大角,特殊角的三角函數(shù)值在解三角形中的綜合應用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎題.8、A【解析】

由兩點式求得直線的方程,利用點到直線距離公式求得三角形的高,由兩點間距離公式求得的長,從而根據(jù)三角形面積公式可得結(jié)果.【詳解】∵點A(1,0),B(0,1),∴直線AB的方程為x+y–1=0,,又∵點C(–2,–3)到直線AB的距離為,∴△ABC的面積為S=.故選A.【點睛】本題主要考查兩點間的距離公式,點到直線的距離公式、三角形面積公式以及直線方程的應用,意在考查綜合運用所學知識解答問題的能力,屬于中檔題.9、D【解析】

分別求出長方體和三棱錐E-BCD的體積,即可求出答案.【詳解】由題意,,,則.故選D.【點睛】本題考查了長方體與三棱錐的體積的計算,考查了學生的計算能力,屬于基礎題.10、B【解析】分析:要求圓柱的軸截面的面積,需先知道圓柱的軸截面是什么圖形,圓柱的軸截面是矩形,由題意知該矩形的長、寬分別為,根據(jù)矩形面積公式可得結(jié)果.詳解:因為圓柱的軸截面是矩形,由題意知該矩形的長是母線長,寬為底面圓的直徑,所以軸截面的面積為,故選B.點睛:本題主要考查圓柱的性質(zhì)以及圓柱軸截面的面積,屬于簡單題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)的定義把帶入即可?!驹斀狻俊摺唷摺啖佟啖冖?②得∴故答案為:【點睛】本題主要考查了新定義題,解新定義題首先需要讀懂新定義,其次再根據(jù)題目的條件帶入新定義即可,屬于中等題。12、8【解析】

畫出滿足約束條件的可行域,利用目標函數(shù)的幾何意義求解最大值即可.【詳解】實數(shù),滿足條件的可行域如下圖所示:將目標函數(shù)變形為:,則要求的最大值,即使直線的截距最大,由圖可知,直線過點時截距最大,,故答案為:8.【點睛】本題考查線性規(guī)劃的簡單應用,解題關鍵是明確目標函數(shù)的幾何意義.13、【解析】

直接運用空間兩點間距離公式求解即可.【詳解】由空間兩點距離公式可得:.【點睛】本題考查了空間兩點間距離公式,考查了數(shù)學運算能力.14、【解析】

在和在中,根據(jù)正弦定理,分別表示出.由可得等式,代入已知條件化簡即可得解.【詳解】在中,由正弦定理可得,則在中,由正弦定理可得,則點D為BC的中點,則所以因為,,由誘導公式可知代入上述兩式可得所以故答案為:【點睛】本題考查了正弦定理的簡單應用,屬于基礎題.15、-1【解析】

先將函數(shù)轉(zhuǎn)化成同名三角函數(shù),再結(jié)合二次函數(shù)性質(zhì)進行求解即可【詳解】令,,對稱軸為;當時,時函數(shù)值最大,,解得;當時,對稱軸為,函數(shù)在時取到最大值,與題設矛盾;當時,時函數(shù)值最大,,解得;故的數(shù)值為:-1故答案為:-1【點睛】本題考查換元法在三角函數(shù)中的應用,分類討論求解函數(shù)最值,屬于中檔題16、1【解析】

設,在扇形中,利用扇形的面積公式可求,根據(jù)已知,在扇形中,利用扇形的面積公式即可計算得解.【詳解】解:設,扇形的面積為1,即:,解得:,為的中點,,在扇形中,.故答案為:1.【點睛】本題主要考查了扇形的面積公式的應用,考查了數(shù)形結(jié)合思想和轉(zhuǎn)化思想,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)最小正周期是(2)【解析】

(1)運用輔助角公式化簡得;(2)先計算的值為,構(gòu)造,求出的值.【詳解】(1)因為,所以,所以函數(shù)的最小正周期是.(2)因為,所以,因為,所以,所以,則【點睛】利用角的配湊法,即進行角的整體代入求值,考查整體思想的運用.18、(1);(2);(3).【解析】

(1)計算出、的坐標,可計算出的坐標,再利用平面向量模長的坐標表示可計算出向量的模;(2)由可計算出的值;(3)由投影的定義得出向量在上的投影為可計算出結(jié)果.【詳解】(1)、、,,,因此,;(2)由(1)知,,,所以;(3)由(2)知向量與的夾角的余弦為,且.所以向量在上的投影為.【點睛】本題考查平面向量的坐標運算以及平面向量夾角的坐標表示、以及向量投影的計算,解題時要熟悉平面向量坐標的運算律以及平面向量數(shù)量積、模、夾角的坐標運算,考查計算能力,屬于基礎題.19、(1)或(2)當時,;當時,【解析】

(1)若,則或,解得實數(shù)的取值范圍;(2)若則,結(jié)合交集定義,分類討論可得.【詳解】解:(1)若,則或,即或.所以的取值范圍為或.(2)∵,則且,∴.當時,;當時,.【點睛】本題考查集合的交集運算,元素與元素的關系,分類討論思想,屬于中檔題.20、(1)(2),【解析】

(1)利用累加法得到答案.(2)計算,利用裂項求和得到前項和.【詳解】(1)由題意可知左右累加得.(2).【點睛】本題考查了數(shù)列的累加法,裂項求和法,是數(shù)列的??碱}型.21、(1);(2);(3).【解析】

(1)對稱軸為,對稱軸為,再根據(jù)圖像平移關系求解;(2)分離參數(shù),轉(zhuǎn)化為求函數(shù)的最值;(3)令為整體,轉(zhuǎn)化為二次

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論