版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
福州屏東中學(xué)2024年數(shù)學(xué)高一下期末監(jiān)測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中,,,,則B等于()A.或 B. C. D.以上答案都不對2.不等式所表示的平面區(qū)域是()A. B.C. D.3.盒中裝有除顏色以外,形狀大小完全相同的3個紅球、2個白球、1個黑球,從中任取2個球,則互斥而不對立的兩個事件是()A.至少有一個白球;至少有一個紅球 B.至少有一個白球;紅、黑球各一個C.恰有一個白球:一個白球一個黑球 D.至少有一個白球;都是白球4.用數(shù)學(xué)歸納法證明n+1n+2?n+n=-2A.2k+1 B.22k+1 C.2k+1k+15.下列關(guān)于四棱柱的說法:①四條側(cè)棱互相平行且相等;②兩對相對的側(cè)面互相平行;③側(cè)棱必與底面垂直;④側(cè)面垂直于底面.其中正確結(jié)論的個數(shù)為()A.1 B.2 C.3 D.46.已知,,,,那么()A. B. C. D.7.一個幾何體的三視圖如圖(圖中尺寸單位:m),則該幾何體的體積為()A. B. C. D.8.集合,,則中元素的個數(shù)為()A.0 B.1 C.2 D.39.已知向量,,則()A.-1 B.-2 C.1 D.010.函數(shù)的最大值為()A.1 B.2 C.3 D.5二、填空題:本大題共6小題,每小題5分,共30分。11.已知,則的值為.12.在等差數(shù)列中,,,則.13.在等比數(shù)列中,已知,則=________________.14.在直三棱柱中,,,,則異面直線與所成角的余弦值是_____________.15.函數(shù)的初相是__________.16.函數(shù)的值域為__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知數(shù)列滿足,,設(shè).(1)求,,;(2)證明:數(shù)列是等比數(shù)列,并求數(shù)列和的通項公式.18.在區(qū)間內(nèi)隨機取兩個數(shù),則關(guān)于的一元二次方程有實數(shù)根的概率為__________.19.已知三角形的三個頂點.(1)求BC邊所在直線的方程;(2)求BC邊上的高所在直線方程.20.如圖,在四棱錐P‐ABCD中,四邊形ABCD為正方形,PA⊥平面ABCD,E為PD的中點.求證:(1)PB∥平面AEC;(2)平面PCD⊥平面PAD.21.正項數(shù)列的前n項和Sn滿足:(1)求數(shù)列的通項公式;(2)令,數(shù)列{bn}的前n項和為Tn,證明:對于任意的n∈N*,都有Tn<.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】試題分析:由正弦定理得,得,結(jié)合得,故選C.考點:正弦定理.2、D【解析】
根據(jù)二元一次不等式組表示平面區(qū)域進行判斷即可.【詳解】不等式組等價為或則對應(yīng)的平面區(qū)域為D,
故選:D.【點睛】本題主要考查二元一次不等式組表示平區(qū)域,比較基礎(chǔ).3、B【解析】
根據(jù)對立事件和互斥事件的定義,對每個選項進行逐一分析即可.【詳解】從6個小球中任取2個小球,共有15個基本事件,因為存在事件:取出的兩個球為1個白球和1個紅球,故至少有一個白球;至少有一個紅球,這兩個事件不互斥,故A錯誤;因為存在事件:取出的兩個球為1個白球和1個黑球,故恰有一個白球:一個白球一個黑球,這兩個事件不互斥,故C錯誤;因為存在事件:取出的兩個球都是白球,故至少有一個白球;都是白球,這兩個事件不互斥,故D錯誤;因為至少有一個白球,包括:1個白球和1個紅球,1個白球和1個黑球,2個白球這3個基本事件;紅、黑球各一個只包括1個紅球1個白球這1個基本事件,故兩個事件互斥,因還有其它基本事件未包括,故不對立.故B正確.故選:B.【點睛】本題考查互斥事件和對立事件的辨析,屬基礎(chǔ)題.4、B【解析】
要分清起止項,以及相鄰兩項的關(guān)系,由此即可分清增加的代數(shù)式。【詳解】當(dāng)n=k時,左邊=k+1當(dāng)n=k+1時,左邊====k+1∴從k到k+1,左邊需要增乘的代數(shù)式為22k+1【點睛】本題主要考查學(xué)生如何理解數(shù)學(xué)歸納法中的遞推關(guān)系。5、A【解析】
根據(jù)棱柱的概念和四棱錐的基本特征,逐項進行判定,即可求解,得到答案.【詳解】由題意,根據(jù)棱柱的定義:有兩個面互相平行,其余各面都是四邊形,并且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體叫做棱柱,側(cè)棱垂直于底面的四棱柱叫做直四棱柱,由四棱柱的各個側(cè)面都是平行四邊形,所有的側(cè)棱都平行且相等,①正確;②兩對相對的側(cè)面互相平行,不正確,如下圖:左右側(cè)面不平行.本題題目說的是“四棱柱”不一定是“直四棱柱”,所以,③④不正確,故選A.【點睛】本題主要考查了四棱柱的概念及其應(yīng)用,其中解答中熟記棱柱的概念以及四棱錐的基本特征是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.6、C【解析】由于故,故,所以.由于,由于,所以,故.綜上所述選.7、C【解析】
根據(jù)三視圖判斷幾何體的形狀,計算即可得解.【詳解】該幾何體是一個半徑為1的球體削去四分之一,體積為.故選:C.【點睛】本題考查了三視圖的識別和球的體積計算,屬于基礎(chǔ)題.8、C【解析】,則,所以,元素個數(shù)為2個。故選C。9、C【解析】
根據(jù)向量數(shù)量積的坐標(biāo)運算,得到答案.【詳解】向量,,所以.故選:C.【點睛】本題考查向量數(shù)量積的坐標(biāo)運算,屬于簡單題.10、D【解析】
由可求得所處的范圍,進而得到函數(shù)最大值.【詳解】的最大值為故選:【點睛】本題考查函數(shù)最值的求解,關(guān)鍵是明確余弦型函數(shù)的值域,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
利用商數(shù)關(guān)系式化簡即可.【詳解】,故填.【點睛】利用同角的三角函數(shù)的基本關(guān)系式可以化簡一些代數(shù)式,常見的方法有:(1)弦切互化法:即把含有正弦和余弦的代數(shù)式化成關(guān)于正切的代數(shù)式,也可以把含有正切的代數(shù)式化為關(guān)于余弦和正弦的代數(shù)式;(2)“1”的代換法:有時可以把看成.12、8【解析】
設(shè)等差數(shù)列的公差為,則,所以,故答案為8.13、【解析】14、【解析】
先找出線面角,運用余弦定理進行求解【詳解】連接交于點,取中點,連接,則,連接為異面直線與所成角在中,,,同理可得,,異面直線與所成角的余弦值是故答案為【點睛】本題主要考查了異面直線所成的角,考查了空間想象能力,運算能力和推理論證能力,屬于基礎(chǔ)題.15、【解析】
根據(jù)函數(shù)的解析式即可求出函數(shù)的初相.【詳解】,初相為.故答案為:【點睛】本題主要考查的物理意義,屬于簡單題.16、【解析】
本題首先可通過三角恒等變換將函數(shù)化簡為,然后根據(jù)的取值范圍即可得出函數(shù)的值域.【詳解】因為,所以.【點睛】本題考查通過三角恒等變換以及三角函數(shù)性質(zhì)求值域,考查二倍角公式以及兩角和的正弦公式,考查化歸與轉(zhuǎn)化思想,是中檔題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),,;(2)證明見詳解,,.【解析】
(1)根據(jù)遞推公式,賦值求解即可;(2)利用定義,求證為定值即可,由數(shù)列通項公式即可求得和.【詳解】(1)由條件可得,將代入得,,而,所以.將代入得,所以.從而,,.(2)由條件可得,即,,又,所以是首項為1,公比為3的等比數(shù)列,.因為,所以.【點睛】本題考查利用遞推關(guān)系求數(shù)列某項的值,以及利用數(shù)列定義證明等比數(shù)列,及求通項公式,是數(shù)列綜合基礎(chǔ)題.18、【解析】試題分析:解:在平面直角坐標(biāo)系中,以軸和軸分別表示的值,因為m、n是中任意取的兩個數(shù),所以點與右圖中正方形內(nèi)的點一一對應(yīng),即正方形內(nèi)的所有點構(gòu)成全部試驗結(jié)果的區(qū)域.設(shè)事件表示方程有實根,則事件,所對應(yīng)的區(qū)域為圖中的陰影部分,且陰影部分的面積為.故由幾何概型公式得,即關(guān)于的一元二次方程有實根的概率為.考點:本題主要考查幾何概型概率的計算.點評:幾何概型概率的計算,關(guān)鍵是明確基本事件空間及發(fā)生事件的幾何度量,有面積、體積、角度數(shù)、線段長度等.本題涉及到了線性規(guī)劃問題中平面區(qū)域.19、(1)(2)【解析】
(1)由已知條件結(jié)合直線的兩點式方程的求法求解即可;(2)先求出直線BC的斜率,再求出BC邊上的高所在直線的斜率,然后利用直線的點斜式方程的求法求解即可.【詳解】解:(1),,直線BC的方程為,即.(2),直線BC邊上的高所在的直線的斜率為,又,直線BC邊上的高的方程為:,即BC邊上的高所在直線方程為.【點睛】本題考查了直線的兩點式方程的求法,重點考查了直線的位置關(guān)系及直線的點斜式方程的求法,屬基礎(chǔ)題.20、(1)詳證見解析;(2)詳證見解析.【解析】
(1)可通過連接交于,通過中位線證明和平行得證平面.(2)可通過正方形得證,通過平面得證,然后通過線面垂直得證面面垂直.【詳解】(1)證明:連交于O,因為四邊形是正方形,所以,連,則是三角形的中位線,,平面,平面所以平面.(2)因為平面,所以,因為是正方形,所以,所以平面,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 海南職業(yè)技術(shù)學(xué)院《電視攝像基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 二零二五年度擔(dān)保合同標(biāo)的特性與信用管理3篇
- 二零二五年度新媒體運營兼職聘任合同范本3篇
- 海南師范大學(xué)《游泳訓(xùn)練理論與實踐》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年度小額貸款反擔(dān)保償還服務(wù)合同模板3篇
- 2025年度架工承包合同服務(wù)內(nèi)容擴展2篇
- 二零二五年度建筑工程施工現(xiàn)場環(huán)境保護教育培訓(xùn)合同3篇
- 二零二五年度橋梁欄桿維修與加固服務(wù)合同3篇
- 二零二五年度舊電器買賣與環(huán)?;厥仗幚砗贤?篇
- 二零二五年度假山景區(qū)生態(tài)保護與可持續(xù)發(fā)展承包合同3篇
- 2022年中國農(nóng)業(yè)銀行(廣東分行)校園招聘筆試試題及答案解析
- 品牌管理第五章品牌體驗課件
- 基于CAN通訊的儲能變流器并機方案及應(yīng)用分析報告-培訓(xùn)課件
- 外科醫(yī)師手術(shù)技能評分標(biāo)準(zhǔn)
- 保姆級別CDH安裝運維手冊
- 菌草技術(shù)及產(chǎn)業(yè)化應(yīng)用課件
- GB∕T 14527-2021 復(fù)合阻尼隔振器和復(fù)合阻尼器
- 隧道二襯、仰拱施工方案
- 顫?。ㄅ两鹕。┲嗅t(yī)護理常規(guī)
- 果膠項目商業(yè)計劃書(模板范本)
- 旋挖鉆成孔掏渣筒沉渣處理施工工藝
評論
0/150
提交評論