版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖北省名師聯(lián)盟2024屆高一數(shù)學(xué)第二學(xué)期期末考試試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中,角A,B,C所對的邊分別為a,b,c,若,,,則滿足條件的的個數(shù)為()A.0 B.1 C.2 D.無數(shù)多個2.一支田徑隊有男運動員560人,女運動員420人,為了解運動員的健康情況,從男運動員中任意抽取16人,從女生中任意抽取12人進行調(diào)查.這種抽樣方法是()A.簡單隨機抽樣法 B.抽簽法C.隨機數(shù)表法 D.分層抽樣法3.若正實數(shù),滿足,則有下列結(jié)論:①;②;③;④.其中正確結(jié)論的個數(shù)為()A.1 B.2 C.3 D.44.角的終邊落在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.在中,已知a,b,c分別為,,所對的邊,且a,b,c成等差數(shù)列,,,則()A. B. C. D.6.某市舉行“精英杯”數(shù)學(xué)挑戰(zhàn)賽,分初賽和復(fù)賽兩個階段進行,規(guī)定:初賽成績大于90分的具有復(fù)賽資格,某校所有學(xué)生的成績均在區(qū)間內(nèi),其頻率分布直方圖如圖所示,該校有130名學(xué)生獲得了復(fù)賽資格,則該校參加初賽的人數(shù)約為()A.200 B.400 C.2000 D.40007.如圖,平面ABCD⊥平面EDCF,且四邊形ABCD和四邊形EDCF都是正方形,則異面直線BD與CE所成的角為()A. B. C. D.8.已知平面向量=(1,-3),=(4,-2),與垂直,則是()A.2 B.1 C.-2 D.-19.已知2弧度的圓心角所對的弧長為2,則這個圓心角所對的弦長是()A. B. C. D.10.如圖,在下列四個正方體中,,,,,,,為所在棱的中點,則在這四個正方體中,陰影平面與所在平面平行的是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,是平面內(nèi)兩個互相垂直的單位向量,若向量滿足,則的最大值是.12.已知角滿足,則_____13.無限循環(huán)小數(shù)化成最簡分數(shù)為________14.已知正四棱錐的底面邊長為,高為,則該四棱錐的側(cè)面積是______________15.已知,則的值為______16.若直線上存在點可作圓的兩條切線,切點為,且,則實數(shù)的取值范圍為.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知圓,直線(1)求證:直線過定點;(2)求直線被圓所截得的弦長最短時的值;(3)已知點,在直線MC上(C為圓心),存在定點N(異于點M),滿足:對于圓C上任一點P,都有為一常數(shù),試求所有滿足條件的點N的坐標及該常數(shù).18.已知函數(shù)(1)解關(guān)于的不等式;(2)若,令,求函數(shù)的最小值.19.已知集合,,求.20.如圖,長方形材料中,已知,.點為材料內(nèi)部一點,于,于,且,.現(xiàn)要在長方形材料中裁剪出四邊形材料,滿足,點、分別在邊,上.(1)設(shè),試將四邊形材料的面積表示為的函數(shù),并指明的取值范圍;(2)試確定點在上的位置,使得四邊形材料的面積最小,并求出其最小值.21.在平面直角坐標系xOy中,已知點P是直線與直線的交點.(1)求點P的坐標;(2)若直線l過點P,且與直線垂直,求直線l的方程.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
直接由正弦定理分析判斷得解.【詳解】由正弦定理得,所以C只有一解,所以三角形只有一解.故選:B【點睛】本題主要考查正弦定理的應(yīng)用,意在考查學(xué)生對這些知識的理解掌握水平.2、D【解析】
若總體由差異明顯的幾部分組成時,經(jīng)常采用分層抽樣的方法進行抽樣【詳解】總體由男生和女生組成,比例為560:420=4:1,所抽取的比例也是16:12=4:1.故選D.【點睛】本小題主要考查抽樣方法,當總體由差異明顯的幾部分組成時,經(jīng)常采用分層抽樣的方法進行抽樣,屬基本題.3、C【解析】
根據(jù)不等式的基本性質(zhì),逐項推理判斷,即可求解,得到答案.【詳解】由題意,正實數(shù)是正數(shù),且,①中,可得,所以是錯誤的;②中,由,可得是正確的;③中,根據(jù)實數(shù)的性質(zhì),可得是正確的;④中,因為,所以是正確的,故選C.【點睛】本題主要考查了不等式的性質(zhì)的應(yīng)用,其中解答中熟記不等式的基本性質(zhì),合理推理是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.4、C【解析】
由,即可判斷.【詳解】,則與的終邊相同,則角的終邊落在第三象限故選:C【點睛】本題主要考查了判斷角的終邊所在象限,屬于基礎(chǔ)題.5、B【解析】
利用成等差數(shù)列可得,再利用余弦定理構(gòu)造的結(jié)構(gòu)再代入求得即可.【詳解】由成等差數(shù)列可得,由余弦定理有,即,解得,即.故選:B【點睛】本題主要考查了等差中項與余弦定理的運算,需要根據(jù)題意構(gòu)造與的結(jié)構(gòu)代入求解.屬于中檔題.6、A【解析】
由頻率和為1,可算得成績大于90分對應(yīng)的頻率,然后由頻數(shù)÷總數(shù)=頻率,即可得到本題答案.【詳解】由圖,得成績大于90分對應(yīng)的頻率=,設(shè)該校參加初賽的人數(shù)為x,則,得,所以該校參加初賽的人數(shù)約為200.故選:A【點睛】本題主要考查頻率直方圖的相關(guān)計算,涉及到頻率和為1以及頻數(shù)÷總數(shù)=頻率的應(yīng)用.7、C【解析】
以D為原點,DA為x軸,DC為y軸,DE為z軸,建立空間直角坐標系,利用向量法能求出異面直線BD與CE所成的角.【詳解】∵平面ABCD⊥平面EDCF,且四邊形ABCD和四邊形EDCF都是正方形,∴以D為原點,DA為x軸,DC為y軸,DE為z軸,建立空間直角坐標系,設(shè)AB=1,則B(1,1,0),D(0,0,0),C(0,1,0),E(0,0,1),(﹣1,﹣1,0),(0,﹣1,1),設(shè)異面直線BD與CE所成的角為θ,則cosθ,∴θ.∴異面直線BD與CE所成的角為.故選:C.【點評】本題考查異面直線所成角的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.8、D【解析】
試題分析:,由與垂直可知考點:向量垂直與坐標運算9、D【解析】
由弧長公式求出圓半徑,再在直角三角形中求解.【詳解】,如圖,設(shè)是中點,則,,,∴.故選D.【點睛】本題考查扇形弧長公式,在求弦長時,常在直角三角形中求解.10、A【解析】
根據(jù)線面平行判定定理以及作截面逐個分析判斷選擇.【詳解】A中,因為,所以可得平面,又,可得平面,從而平面平面B中,作截面可得平面平面(H為C1D1中點),如圖:C中,作截面可得平面平面(H為C1D1中點),如圖:D中,作截面可得為兩相交直線,因此平面與平面不平行,如圖:【點睛】本題考查線面平行判定定理以及截面,考查空間想象能力與基本判斷論證能力,屬中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
,,是平面內(nèi)兩個相互垂直的單位向量,∴,∴,,,為與的夾角,∵是平面內(nèi)兩個相互垂直的單位向量∴,即,所以當時,即與共線時,取得最大值為,故答案為.12、【解析】
利用誘導(dǎo)公式以及兩角和與差的三角公式,化簡求解即可.【詳解】解:角滿足,可得
則.
故答案為:.【點睛】本題考查兩角和與差的三角公式,誘導(dǎo)公式的應(yīng)用,考查計算能力,是基礎(chǔ)題.13、【解析】
利用無窮等比數(shù)列求和的方法即可.【詳解】.故答案為:【點睛】本題主要考查了無窮等比數(shù)列的求和問題,屬于基礎(chǔ)題型.14、【解析】四棱錐的側(cè)面積是15、【解析】
根據(jù)兩角差的正弦公式,化簡,解出的值,再平方,即可求解.【詳解】由題意,可知,,平方可得則故答案為:【點睛】本題考查三角函數(shù)常用公式關(guān)系轉(zhuǎn)換,屬于基礎(chǔ)題.16、【解析】試題分析:若,則,直線上存在點可作和的兩條切線等價于直線與圓有公共點,由圓心到直線的距離公式可得,解之可得.考點:點到直線的距離公式及直線與圓的位置關(guān)系的運用.【方法點晴】本題主要考查了點到直線的距離公式及直線與圓的位置關(guān)系的運用,涉及到圓心到直線的距離公式和不等式的求解,屬于中檔試題,著重考查了學(xué)生分析問題和解答問題的能力,以及學(xué)生的推理與運算能力,本題的解答中直線上存在點可作和的兩條切線等價于直線與圓有公共點是解答的關(guān)鍵.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)直線過定點(2).(3)在直線上存在定點,使得為常數(shù).【解析】分析:(Ⅰ)利用直線系方程的特征,直接求解直線l過定點A的坐標.(Ⅱ)當AC⊥l時,所截得弦長最短,由題知,r=2,求出AC的斜率,利用點到直線的距離,轉(zhuǎn)化求解即可.(Ⅲ)由題知,直線MC的方程為,假設(shè)存在定點N滿足題意,則設(shè)P(x,y),,得,且,求出λ,然后求解比值.詳解:(Ⅰ)依題意得,令且,得直線過定點(Ⅱ)當時,所截得弦長最短,由題知,,得,由得(Ⅲ)法一:由題知,直線的方程為,假設(shè)存在定點滿足題意,則設(shè),,得,且整理得,上式對任意恒成立,且解得,說以(舍去,與重合),綜上可知,在直線上存在定點,使得為常數(shù)點睛:過定點的直線系A(chǔ)1x+B1y+C1+λ(A2x+B2y+C2)=0表示通過兩直線l1∶A1x+B1y+C1=0與l2∶A2x+B2y+C2=0交點的直線系,而這交點即為直線系所通過的定點.18、(1)答案不唯一,具體見解析(2)【解析】
(1)討論的范圍,分情況得的三個答案.(2)時,寫出表達式,利用均值不等式得到最小值.【詳解】(1)①當時,不等式的解集為,②當時,不等式的解集為,③當時,不等式的解集為(2)若時,令(當且僅當,即時取等號).故函數(shù)的最小值為.【點睛】本題考查了解不等式,均值不等式,函數(shù)的最小值,意在考查學(xué)生的綜合應(yīng)用能力.19、【解析】
根據(jù)集合A,B的意義,求出集合A,B,再根據(jù)交集的運算求得結(jié)果即可.【詳解】對于集合A,,對于集合B,當x<1時,故B=;故A∩B=故答案為【點睛】本題考查了交集的運算,準確計算集合A,B是關(guān)鍵,是基礎(chǔ)題.20、(1)見解析;(2)當時,四邊形材料的面積最小,最小值為.【解析】分析:(1)通過直角三角形的邊角關(guān)系,得出和,進而得出四邊形材料的面積的表達式,再結(jié)合已知尺寸條件,確定角的范圍.(2)根據(jù)正切的兩角差公式和換元法,化簡和整理函數(shù)表達式,最后由基本不等式,確定面積最小值及對應(yīng)的點在上的位置.詳解:解:(1)在直角中,因為,,所以,所以,在直角中,因為,,所以,所以,所以,.(2)因為,令,由,得,所以,當且僅當時,即時等號成立,此時,,,答:當時,四邊形材料的面積最小,最小值為.點睛:本題考查三角函數(shù)的實際應(yīng)用,解題時要認真審題,注意挖掘題設(shè)中的隱含條件,合理地進行等價轉(zhuǎn)化,注意換元法和基本不等式的合理運用.換元法求函數(shù)的值域,通過引入新變量(輔助式,輔助函數(shù)等),把所有分散的已知條件聯(lián)系起來,將已知條件和要求的結(jié)果結(jié)合起來,把隱藏在條件中的性質(zhì)顯現(xiàn)出來,或把繁瑣的表達式簡化,之后就可以利用各種常見的函
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度電子商務(wù)平臺交易安全擔保合同
- 2025年國際貿(mào)易實務(wù)風險防范與知識點掌握合同
- 2025年果園轉(zhuǎn)租與農(nóng)業(yè)知識產(chǎn)權(quán)保護合同
- 2025年戶用光伏電站投資合作開發(fā)合同范本
- 二零二五年度二手車二手車過戶代理合同
- 2025年度房產(chǎn)買賣及貸款合同
- 二零二五年度嬰幼兒奶粉產(chǎn)品安全風險評估合同
- 2025年度金融機構(gòu)循環(huán)貸款合同樣本
- 2025年度會所房屋智能化改造升級合同
- 2025年度旅游度假區(qū)土地開發(fā)合同樣本
- 2024年新疆維吾爾自治區(qū)成考(專升本)大學(xué)政治考試真題含解析
- 煤礦復(fù)工復(fù)產(chǎn)培訓(xùn)課件
- 三年級上冊口算題卡每日一練
- 《性激素臨床應(yīng)用》課件
- 眼科疾病與視覺健康
- 洗滌塔操作說明
- 繪本分享《狐貍打獵人》
- 撤銷因私出國(境)登記備案國家工作人員通知書
- (39)-總論第四節(jié)針灸處方
- 《民航服務(wù)溝通技巧》教案第10課兒童旅客服務(wù)溝通
評論
0/150
提交評論