廣東省仲元中學2025屆高一數(shù)學第二學期期末統(tǒng)考模擬試題含解析_第1頁
廣東省仲元中學2025屆高一數(shù)學第二學期期末統(tǒng)考模擬試題含解析_第2頁
廣東省仲元中學2025屆高一數(shù)學第二學期期末統(tǒng)考模擬試題含解析_第3頁
廣東省仲元中學2025屆高一數(shù)學第二學期期末統(tǒng)考模擬試題含解析_第4頁
廣東省仲元中學2025屆高一數(shù)學第二學期期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東省仲元中學2025屆高一數(shù)學第二學期期末統(tǒng)考模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.一條直線經過點,并且它的傾斜角等于直線傾斜角的2倍,則這條直線的方程是()A. B.C. D.2.如圖是某個正方體的平面展開圖,,是兩條側面對角線,則在該正方體中,與()A.互相平行 B.異面且互相垂直 C.異面且夾角為 D.相交且夾角為3.下列說法錯誤的是()A.若樣本的平均數(shù)為5,標準差為1,則樣本的平均數(shù)為11,標準差為2B.身高和體重具有相關關系C.現(xiàn)有高一學生30名,高二學生40名,高三學生30名,若按分層抽樣從中抽取20名學生,則抽取高三學生6名D.兩個變量間的線性相關性越強,則相關系數(shù)的值越大4.已知角α的終邊過點P(2sin60°,-2cos60°),則sinα的值為()A. B. C.- D.-5.10名工人某天生產同一零件,生產的件數(shù)是15,17,14,10,15,17,17,16,14,12.設其平均數(shù)為a,中位數(shù)為b,眾數(shù)為c,則有().A. B. C. D.6.若點在點的北偏東70°,點在點的南偏東30°,且,則點在點的()方向上.A.北偏東20° B.北偏東30° C.北偏西30° D.北偏西15°7.某市舉行“中學生詩詞大賽”,分初賽和復賽兩個階段進行,規(guī)定:初賽成績大于90分的具有復賽資格,某校有800名學生參加了初賽,所有學生的成績均在區(qū)間(30,150]內,其頻率分布直方圖如圖.則獲得復賽資格的人數(shù)為()A.640 B.520 C.280 D.2408.用數(shù)學歸納法時,從“k到”左邊需增乘的代數(shù)式是()A. B.C. D.9.等差數(shù)列中,,則數(shù)列前9項的和等于()A.66 B.99 C.144 D.29710.設等比數(shù)列的公比為,其前項的積為,并且滿足條件:;給出下列論:①;②;③值是中最大值;④使成立的最大自然數(shù)等于198.其中正確的結論是()A.①③ B.①④ C.②③ D.②④二、填空題:本大題共6小題,每小題5分,共30分。11.把二進制數(shù)化為十進制數(shù)是:______.12.已知線段上有個確定的點(包括端點與).現(xiàn)對這些點進行往返標數(shù)(從…進行標數(shù),遇到同方向點不夠數(shù)時就“調頭”往回數(shù)).如圖:在點上標,稱為點,然后從點開始數(shù)到第二個數(shù),標上,稱為點,再從點開始數(shù)到第三個數(shù),標上,稱為點(標上數(shù)的點稱為點),……,這樣一直繼續(xù)下去,直到,,,…,都被標記到點上,則點上的所有標記的數(shù)中,最小的是_______.13.函數(shù)的定義域為_____________.14.各項均為實數(shù)的等比數(shù)列的前項和為,已知成等差數(shù)列,則數(shù)列的公比為________.15.已知球的表面積為4,則該球的體積為________.16.已知,函數(shù)的最小值為__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.甲,乙兩機床同時加工直徑為100cm的零件,為檢驗質量,各從中抽取6件測量的數(shù)據(jù)為:甲:99,100,98,100,100,103乙:99,100,102,99,100,100(1)分別計算兩組數(shù)據(jù)的平均數(shù)及方差(2)根據(jù)計算結果判斷哪臺機床加工零件的質量更穩(wěn)定.18.如圖,在平面四邊形ABCD中,,,,.(1)若點E為邊CD上的動點,求的最小值;(2)若,,,求的值.19.設是等差數(shù)列,且.(Ⅰ)求的通項公式;(Ⅱ)求.20.無窮數(shù)列滿足:為正整數(shù),且對任意正整數(shù),為前項、、、中等于的項的個數(shù).(1)若,求和的值;(2)已知命題存在正整數(shù),使得,判斷命題的真假并說明理由;(3)若對任意正整數(shù),都有恒成立,求的值.21.在△ABC中,已知BC=7,AB=3,∠A=60°.(1)求cos∠C的值;(2)求△ABC的面積.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

先求出直線的傾斜角,進而得出所求直線的傾斜角和斜率,再根據(jù)點斜式寫直線的方程.【詳解】已知直線的斜率為,則傾斜角為,故所求直線的傾斜角為,斜率為,由直線的點斜式得,即。故選B.【點睛】本題考查直線的性質與方程,屬于基礎題.2、D【解析】

先將平面展開圖還原成正方體,再判斷求解.【詳解】將平面展開圖還原成正方體如圖所示,則B,C兩點重合,所以與相交,連接,則為正三角形,所以與的夾角為.故選D.【點睛】本題主要考查空間直線的位置關系,意在考查學生對該知識的理解掌握水平和分析推理能力.3、D【解析】

利用平均數(shù)和方差的定義,根據(jù)線性回歸的有關知識和分層抽樣原理,即可判斷出答案.【詳解】對于A:若樣本的平均數(shù)為5,標準差為1,則樣本的平均數(shù)2×5+1=11,標準差為2×1=2,故正確對于B:身高和體重具有相關關系,故正確對于C:高三學生占總人數(shù)的比例為:所以抽取20名學生中高三學生有名,故正確對于D:兩個變量間的線性相關性越強,應是相關系數(shù)的絕對值越大,故錯誤故選:D【點睛】本題考查了線性回歸的有關知識,以及平均數(shù)和方差、分層抽樣原理的應用問題,是基礎題.4、D【解析】

利用特殊角的三角函數(shù)值得出點的坐標,然后利用正弦的定義,求得的值.【詳解】依題意可知,所以,故選D.【點睛】本小題主要考查三角函數(shù)的定義,考查特殊角的三角函數(shù)值,屬于基礎題.5、B【解析】

根據(jù)所給數(shù)據(jù),分別求出平均數(shù)為a,中位數(shù)為b,眾數(shù)為c,然后進行比較可得選項.【詳解】,中位數(shù)為,眾數(shù)為.故選:B.【點睛】本題主要考查統(tǒng)計量的求解,明確平均數(shù)、中位數(shù)、眾數(shù)的求解方法是求解的關鍵,側重考查數(shù)學運算的核心素養(yǎng).6、A【解析】

作出方位角,根據(jù)等腰三角形的性質可得.【詳解】如圖,,,則,∵,∴,而,∴∴點在點的北偏東20°方向上.故選:A.【點睛】本題考查方位角概念,掌握方位角的定義是解題基礎.方位角是以南北向為基礎,北偏東,北偏西,南偏東,南偏西等等.7、B【解析】

由頻率分布直方圖得到初賽成績大于90分的頻率,由此能求出獲得復賽資格的人數(shù).【詳解】初賽成績大于90分的具有復賽資格,某校有800名學生參加了初賽,所有學生的成績均在區(qū)間(30,150]內,由頻率分布直方圖得到初賽成績大于90分的頻率為:1﹣(0.0025+0.0075+0.0075)×20=0.1.∴獲得復賽資格的人數(shù)為:0.1×800=2.故選:B.【點睛】本題考查頻率分布直方圖的應用,考查頻數(shù)的求法,考查頻率分布直方圖等基礎知識,是基礎題.8、C【解析】

分別求出n=k時左端的表達式,和n=k+1時左端的表達式,比較可得“n從k到k+1”左端需增乘的代數(shù)式.【詳解】當n=k時,左端=(k+1)(k+2)(k+3)…(2k),當n=k+1時,左端=(k+2)(k+3)…(2k)(2k+1)(2k+2),∴左邊需增乘的代數(shù)式是故選:C.【點睛】本題考查用數(shù)學歸納法證明等式,分別求出n=k時左端的表達式和n=k+1時左端的表達式,是解題的關鍵.9、B【解析】

根據(jù)等差數(shù)列性質,結合條件可得,進而求得.再根據(jù)等差數(shù)列前n項和公式表示出,即可得解.【詳解】等差數(shù)列中,,則,解得,因而,由等差數(shù)列前n項和公式可得,故選:B.【點睛】本題考查了等差數(shù)列性質的應用,等差數(shù)列前n項和公式的用法,屬于基礎題.10、B【解析】

利用等比數(shù)列的性質及等比數(shù)列的通項公式判斷①正確;利用等比數(shù)列的性質及不等式的性質判斷②錯誤;利用等比數(shù)列的性質判斷③錯誤;利用等比數(shù)列的性質判斷④正確,,從而得出結論.【詳解】解:由可得又即由,即,結合,所以,,即,,即,即①正確;又,所以,即,即②錯誤;因為,即值是中最大值,即③錯誤;由,即,即,又,即,即④正確,綜上可得正確的結論是①④,故選:B.【點睛】本題考查了等比數(shù)列的性質及不等式的性質,重點考查了運算能力,屬中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、51【解析】110011(2)12、【解析】

將線段上的點考慮為一圓周,所以共有16個位置,利用規(guī)則,可知標記2019的是,2039190除以16的余數(shù)為6,即線段的第6個點標為2019,則,令,即可得.【詳解】依照題意知,標有2的是1+2,標有3的是1+2+3,……,標有2019的是1+2+3+……+2019,將將線段上的點考慮為一圓周,所以共有16個位置,利用規(guī)則,可知標記2019的是,2039190除以16的余數(shù)為6,即線段的第6個點標為2019,,令,,解得,故點上的所有標記的數(shù)中,最小的是3.【點睛】本題主要考查利用合情推理,分析解決問題的能力.意在考查學生的邏輯推理能力,13、【解析】函數(shù)的定義域為故答案為14、【解析】

根據(jù)成等差數(shù)列得到,計算得到答案.【詳解】成等差數(shù)列,則故答案為:【點睛】本題考查了等差數(shù)列,等比數(shù)列的綜合應用,意在考查學生對于數(shù)列公式的靈活運用.15、【解析】

先根據(jù)球的表面積公式求出半徑,再根據(jù)體積公式求解.【詳解】設球半徑為,則,解得,所以【點睛】本題考查球的面積、體積計算,屬于基礎題.16、5【解析】

變形后利用基本不等式可得最小值.【詳解】∵,∴4x-5>0,∴當且僅當時,取等號,即時,有最小值5【點睛】本題考查利用基本不等式求最值,湊出可利用基本不等式的形式是解決問題的關鍵,使用基本不等式時要注意“一正二定三相等”的法則.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);,,;(2)乙機床加工零件的質量更穩(wěn)定.【解析】

(1)根據(jù)題中數(shù)據(jù),結合平均數(shù)與方差的公式,即可得出結果;(2)根據(jù)(1)的結果,結合平均數(shù)與方差的意義,即可得出結果.【詳解】(1)由題中數(shù)據(jù)可得:;,所以,;(2)兩臺機床所加工零件的直徑的平均值相同,又所以乙機床加工零件的質量更穩(wěn)定.【點睛】本題主要考查平均數(shù)與方差,熟記公式即可,屬于??碱}型.18、(1);(2)【解析】

(1)建立平面直角坐標系,將范圍問題轉化為函數(shù)的最值問題,進而求解函數(shù)的最值即可;(2)根據(jù)、兩點的位置,可以寫出對應的坐標,從而在直角三角形中求得的正余弦,進而用余弦的和角公式進行求解.【詳解】(1)設AC,BD相交于O,由于,所以,所以,因此,以DB所在的直線為x軸,以AC所在的直線為y軸建立平面直角坐標系如下圖所示:故,,,.因為直線CD的方程為,所以可設.所以,.所以,當時,最小為.(2)因為,,所以,.因此,,.所以,.所以,.【點睛】本題考查利用向量解決幾何問題,涉及范圍問題的求解,屬經典好題.19、(I);(II).【解析】

(I)設公差為,根據(jù)題意可列關于的方程組,求解,代入通項公式可得;(II)由(I)可得,進而可利用等比數(shù)列求和公式進行求解.【詳解】(I)設等差數(shù)列的公差為,∵,∴,又,∴.∴.(II)由(I)知,∵,∴是以2為首項,2為公比的等比數(shù)列.∴.∴點睛:等差數(shù)列的通項公式及前項和共涉及五個基本量,知道其中三個可求另外兩個,體現(xiàn)了用方程組解決問題的思想.20、(1),;(2)真命題,證明見解析;(3).【解析】

(1)根據(jù)題意直接寫出、、的值,可得出結果;(2)分和兩種情況討論,找出使得等式成立的正整數(shù),可得知命題為真命題;(3)先證明出“”是“存在,當時,恒有成立”的充要條件,由此可得出,然后利用定義得出,由此可得出的值.【詳解】(1)根據(jù)題意知,對任意正整數(shù),為前項、、、中等于的項的個數(shù),因此,,,;(2)真命題,證明如下:①當時,則,,,此時,當時,;②當時,設,則,,,此時,當時,.綜上所述,命題為真命題;(3)先證明:“”是“存在,當時,恒有成立”的充要條件.假設存在,使得“存在,當時,恒有成立”.則數(shù)列的前項為,,,,,,后面的項順次為,,,,故對任意的,,對任意的,取,其中表示不超過的最大整數(shù),則,令,則,此時,有,這與矛盾,故若存在,當時,恒有成立,必有;從而得證.另外:當時,數(shù)列為,故,則.【點睛】本題考查數(shù)列知識的應用,涉及到命題真假的判斷,同時也考查了數(shù)列新定義問題,解題時要充分從題中數(shù)列的定義出發(fā),充分利用分類討論思想,綜合性強,屬于難題.21、(1)(2)【解析】

(1)由已知及正弦定理可得sinC的值,利用大邊對大角可求C為銳角,根據(jù)同角三角函數(shù)基本關系式可求cosC的值.(2)利用三

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論