甘肅省慶陽市合水縣中考沖刺卷數(shù)學(xué)試題及答案解析_第1頁
甘肅省慶陽市合水縣中考沖刺卷數(shù)學(xué)試題及答案解析_第2頁
甘肅省慶陽市合水縣中考沖刺卷數(shù)學(xué)試題及答案解析_第3頁
甘肅省慶陽市合水縣中考沖刺卷數(shù)學(xué)試題及答案解析_第4頁
甘肅省慶陽市合水縣中考沖刺卷數(shù)學(xué)試題及答案解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

甘肅省慶陽市合水縣中考沖刺卷數(shù)學(xué)試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在菱形紙片ABCD中,AB=4,∠A=60°,將菱形紙片翻折,使點A落在CD的中點E處,折痕為FG,點F、G分別在邊AB、AD上.則sin∠AFG的值為()A. B. C. D.2.把圖中的五角星圖案,繞著它的中心點O進行旋轉(zhuǎn),若旋轉(zhuǎn)后與自身重合,則至少旋轉(zhuǎn)()A.36° B.45° C.72° D.90°3.從甲、乙、丙、丁四人中選一人參加詩詞大會比賽,經(jīng)過三輪初賽,他們的平均成績都是86.5分,方差分別是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你認(rèn)為派誰去參賽更合適()A.甲 B.乙 C.丙 D.丁4.如圖,在△ABC中,AC=BC,點D在BC的延長線上,AE∥BD,點ED在AC同側(cè),若∠CAE=118°,則∠B的大小為()A.31° B.32° C.59° D.62°5.如圖,點A是反比例函數(shù)y=的圖象上的一點,過點A作AB⊥x軸,垂足為B.點C為y軸上的一點,連接AC,BC.若△ABC的面積為3,則k的值是()A.3 B.﹣3 C.6 D.﹣66.已知矩形ABCD中,AB=3,BC=4,E為BC的中點,以點B為圓心,BA的長為半徑畫圓,交BC于點F,再以點C為圓心,CE的長為半徑畫圓,交CD于點G,則S1-S2=()A.6 B. C.12﹣π D.12﹣π7.圖1是邊長為1的六個小正方形組成的圖形,它可以圍成圖2的正方體,則圖1中正方形頂點A,B在圍成的正方體中的距離是()A.0 B.1 C. D.8.如圖,正六邊形ABCDEF內(nèi)接于⊙O,半徑為4,則這個正六邊形的邊心距OM的長為()A.2 B.2 C. D.49.等腰三角形底角與頂角之間的函數(shù)關(guān)系是()A.正比例函數(shù) B.一次函數(shù) C.反比例函數(shù) D.二次函數(shù)10.一元二次方程x2﹣5x﹣6=0的根是()A.x1=1,x2=6 B.x1=2,x2=3 C.x1=1,x2=﹣6 D.x1=﹣1,x2=6二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,CB=CA,∠ACB=90°,點D在邊BC上(與B、C不重合),四邊形ADEF為正方形,過點F作FG⊥CA,交CA的延長線于點G,連接FB,交DE于點Q,給出以下結(jié)論:①AC=FG;②S△FAB:S四邊形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ?AC,其中正確的結(jié)論的個數(shù)是______.12.已知m=,n=,那么2016m﹣n=_____.13.如圖,在△ABC中,AB≠AC.D,E分別為邊AB,AC上的點.AC=3AD,AB=3AE,點F為BC邊上一點,添加一個條件:______,可以使得△FDB與△ADE相似.(只需寫出一個)

14.函數(shù)y=中,自變量x的取值范圍是_____.15.計算:a6÷a3=_________.16.計算:()?=__.三、解答題(共8題,共72分)17.(8分)求不等式組的整數(shù)解.18.(8分)如圖所示:△ABC是等腰三角形,∠ABC=90°.(1)尺規(guī)作圖:作線段AB的垂直平分線l,垂足為H.(保留作圖痕跡,不寫作法);(2)垂直平分線l交AC于點D,求證:AB=2DH.19.(8分)如圖,在Rt△ABC中,∠C=90°,O為BC邊上一點,以O(shè)C為半徑的圓O,交AB于D點,且AD=AC,延長DO交圓O于E點,連接AE.求證:DE⊥AB;若DB=4,BC=8,求AE的長.20.(8分)如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=mx(1)求一次函數(shù),反比例函數(shù)的表達(dá)式;(2)求證:點C為線段AP的中點;(3)反比例函數(shù)圖象上是否存在點D,使四邊形BCPD為菱形?如果存在,說明理由并求出點D的坐標(biāo);如果不存在,說明理由.21.(8分)如圖,AB是⊙O的直徑,點F,C是⊙O上兩點,且,連接AC,AF,過點C作CD⊥AF交AF延長線于點D,垂足為D.(1)求證:CD是⊙O的切線;(2)若CD=2,求⊙O的半徑.

22.(10分)如圖,將矩形ABCD沿對角線BD折疊,使點C落在點E處,BE與AD交于點F.(1)求證:△ABF≌△EDF;(2)若AB=6,BC=8,求AF的長.23.(12分)如圖,已知拋物線經(jīng)過,兩點,頂點為.(1)求拋物線的解析式;(2)將繞點順時針旋轉(zhuǎn)后,點落在點的位置,將拋物線沿軸平移后經(jīng)過點,求平移后所得圖象的函數(shù)關(guān)系式;(3)設(shè)(2)中平移后,所得拋物線與軸的交點為,頂點為,若點在平移后的拋物線上,且滿足的面積是面積的2倍,求點的坐標(biāo).24.某超市在春節(jié)期間開展優(yōu)惠活動,凡購物者可以通過轉(zhuǎn)動轉(zhuǎn)盤的方式享受折扣和優(yōu)惠,在每個轉(zhuǎn)盤中指針指向每個區(qū)域的可能性均相同,若指針指向分界線,則重新轉(zhuǎn)動轉(zhuǎn)盤,區(qū)域?qū)?yīng)的優(yōu)惠方式如下,A1,A2,A3區(qū)域分別對應(yīng)9折8折和7折優(yōu)惠,B1,B2,B3,B4區(qū)域?qū)?yīng)不優(yōu)惠?本次活動共有兩種方式.方式一:轉(zhuǎn)動轉(zhuǎn)盤甲,指針指向折扣區(qū)域時,所購物品享受對應(yīng)的折扣優(yōu)惠,指針指向其他區(qū)域無優(yōu)惠;方式二:同時轉(zhuǎn)動轉(zhuǎn)盤甲和轉(zhuǎn)盤乙,若兩個轉(zhuǎn)盤的指針均指向折扣區(qū)域時,所購物品享受折上折的優(yōu)惠,其他情況無優(yōu)惠.(1)若顧客選擇方式一,則享受優(yōu)惠的概率為;(2)若顧客選擇方式二,請用樹狀圖或列表法列出所有可能顧客享受折上折優(yōu)惠的概率.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

如圖:過點E作HE⊥AD于點H,連接AE交GF于點N,連接BD,BE.由題意可得:DE=1,∠HDE=60°,△BCD是等邊三角形,即可求DH的長,HE的長,AE的長,

NE的長,EF的長,則可求sin∠AFG的值.【詳解】解:如圖:過點E作HE⊥AD于點H,連接AE交GF于點N,連接BD,BE.

∵四邊形ABCD是菱形,AB=4,∠DAB=60°,

∴AB=BC=CD=AD=4,∠DAB=∠DCB=60°,DC∥AB

∴∠HDE=∠DAB=60°,

∵點E是CD中點

∴DE=CD=1

在Rt△DEH中,DE=1,∠HDE=60°

∴DH=1,HE=

∴AH=AD+DH=5

在Rt△AHE中,AE==1

∴AN=NE=,AE⊥GF,AF=EF

∵CD=BC,∠DCB=60°

∴△BCD是等邊三角形,且E是CD中點

∴BE⊥CD,

∵BC=4,EC=1

∴BE=1

∵CD∥AB

∴∠ABE=∠BEC=90°

在Rt△BEF中,EF1=BE1+BF1=11+(AB-EF)1.

∴EF=由折疊性質(zhì)可得∠AFG=∠EFG,

∴sin∠EFG=sin∠AFG=,故選B.【點睛】本題考查了折疊問題,菱形的性質(zhì),勾股定理,添加恰當(dāng)?shù)妮o助線構(gòu)造直角三角形,利用勾股定理求線段長度是本題的關(guān)鍵.2、C【解析】分析:五角星能被從中心發(fā)出的射線平分成相等的5部分,再由一個周角是360°即可求出最小的旋轉(zhuǎn)角度.詳解:五角星可以被中心發(fā)出的射線平分成5部分,那么最小的旋轉(zhuǎn)角度為:360°÷5=72°.故選C.點睛:本題考查了旋轉(zhuǎn)對稱圖形的概念:把一個圖形繞著一個定點旋轉(zhuǎn)一個角度后,與初始圖形重合,這種圖形叫做旋轉(zhuǎn)對稱圖形,這個定點叫做旋轉(zhuǎn)對稱中心,旋轉(zhuǎn)的角度叫做旋轉(zhuǎn)角.3、A【解析】

根據(jù)方差的概念進行解答即可.【詳解】由題意可知甲的方差最小,則應(yīng)該選擇甲.故答案為A.【點睛】本題考查了方差,解題的關(guān)鍵是掌握方差的定義進行解題.4、A【解析】

根據(jù)等腰三角形的性質(zhì)得出∠B=∠CAB,再利用平行線的性質(zhì)解答即可.【詳解】∵在△ABC中,AC=BC,∴∠B=∠CAB,∵AE∥BD,∠CAE=118°,∴∠B+∠CAB+∠CAE=180°,即2∠B=180°?118°,解得:∠B=31°,故選A.【點睛】此題考查等腰三角形的性質(zhì),關(guān)鍵是根據(jù)等腰三角形的性質(zhì)得出∠B=∠CAB.5、D【解析】試題分析:連結(jié)OA,如圖,∵AB⊥x軸,∴OC∥AB,∴S△OAB=S△CAB=3,而S△OAB=|k|,∴|k|=3,∵k<0,∴k=﹣1.故選D.考點:反比例函數(shù)系數(shù)k的幾何意義.6、D【解析】

根據(jù)題意可得到CE=2,然后根據(jù)S1﹣S2=S矩形ABCD-S扇形ABF-S扇形GCE,即可得到答案【詳解】解:∵BC=4,E為BC的中點,∴CE=2,∴S1﹣S2=3×4﹣,故選D.【點睛】此題考查扇形面積的計算,矩形的性質(zhì)及面積的計算.7、C【解析】試題分析:本題考查了勾股定理、展開圖折疊成幾何體、正方形的性質(zhì);熟練掌握正方形的性質(zhì)和勾股定理,并能進行推理計算是解決問題的關(guān)鍵.由正方形的性質(zhì)和勾股定理求出AB的長,即可得出結(jié)果.解:連接AB,如圖所示:根據(jù)題意得:∠ACB=90°,由勾股定理得:AB==;故選C.考點:1.勾股定理;2.展開圖折疊成幾何體.8、B【解析】分析:連接OC、OB,證出△BOC是等邊三角形,根據(jù)銳角三角函數(shù)的定義求解即可.詳解:如圖所示,連接OC、OB

∵多邊形ABCDEF是正六邊形,∴∠BOC=60°,∵OC=OB,∴△BOC是等邊三角形,∴∠OBM=60°,∴OM=OBsin∠OBM=4×=2.故選B.點睛:考查的是正六邊形的性質(zhì)、等邊三角形的判定與性質(zhì)、三角函數(shù);熟練掌握正六邊形的性質(zhì),由三角函數(shù)求出OM是解決問題的關(guān)鍵.9、B【解析】

根據(jù)一次函數(shù)的定義,可得答案.【詳解】設(shè)等腰三角形的底角為y,頂角為x,由題意,得x+2y=180,所以,y=﹣x+90°,即等腰三角形底角與頂角之間的函數(shù)關(guān)系是一次函數(shù)關(guān)系,故選B.【點睛】本題考查了實際問題與一次函數(shù),根據(jù)題意正確列出函數(shù)關(guān)系式是解題的關(guān)鍵.10、D【解析】

本題應(yīng)對原方程進行因式分解,得出(x-6)(x+1)=1,然后根據(jù)“兩式相乘值為1,這兩式中至少有一式值為1.”來解題.【詳解】x2-5x-6=1(x-6)(x+1)=1x1=-1,x2=6故選D.【點睛】本題考查了一元二次方程的解法.解一元二次方程常用的方法有直接開平方法,配方法,公式法,因式分解法,要根據(jù)方程的提點靈活選用合適的方法.本題運用的是因式分解法.二、填空題(本大題共6個小題,每小題3分,共18分)11、①②③④.【解析】

由正方形的性質(zhì)得出∠FAD=90°,AD=AF=EF,證出∠CAD=∠AFG,由AAS證明△FGA≌△ACD,得出AC=FG,①正確;

證明四邊形CBFG是矩形,得出S△FAB=FB?FG=S四邊形CBFG,②正確;

由等腰直角三角形的性質(zhì)和矩形的性質(zhì)得出∠ABC=∠ABF=45°,③正確;

證出△ACD∽△FEQ,得出對應(yīng)邊成比例,得出④正確.【詳解】解:∵四邊形ADEF為正方形,

∴∠FAD=90°,AD=AF=EF,

∴∠CAD+∠FAG=90°,

∵FG⊥CA,

∴∠GAF+∠AFG=90°,

∴∠CAD=∠AFG,

在△FGA和△ACD中,,

∴△FGA≌△ACD(AAS),

∴AC=FG,①正確;

∵BC=AC,

∴FG=BC,

∵∠ACB=90°,F(xiàn)G⊥CA,

∴FG∥BC,

∴四邊形CBFG是矩形,∴∠CBF=90°,S△FAB=FB?FG=S四邊形CBFG,②正確;

∵CA=CB,∠C=∠CBF=90°,

∴∠ABC=∠ABF=45°,③正確;

∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,

∴△ACD∽△FEQ,

∴AC:AD=FE:FQ,

∴AD?FE=AD2=FQ?AC,④正確;

故答案為①②③④.【點睛】本題考查了相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、正方形的性質(zhì)、矩形的判定與性質(zhì)、等腰直角三角形的性質(zhì);熟練掌握正方形的性質(zhì),證明三角形全等和三角形相似是解決問題的關(guān)鍵.12、1【解析】

根據(jù)積的乘方的性質(zhì)將m的分子轉(zhuǎn)化為以3和5為底數(shù)的冪的積,然后化簡從而得到m=n,再根據(jù)任何非零數(shù)的零次冪等于1解答.【詳解】解:∵m===,∴m=n,∴2016m-n=20160=1.故答案為:1【點睛】本題考查了同底數(shù)冪的除法,積的乘方的性質(zhì),難點在于轉(zhuǎn)化m的分母并得到m=n.13、或【解析】因為,,,所以,欲使與相似,只需要與相似即可,則可以添加的條件有:∠A=∠BDF,或者∠C=∠BDF,等等,答案不唯一.【方法點睛】在解決本題目,直接處理與,無從下手,沒有公共邊或者公共角,稍作轉(zhuǎn)化,通過,與相似.這時,柳暗花明,迎刃而解.14、x≠﹣.【解析】

該函數(shù)是分式,分式有意義的條件是分母不等于1,故分母x﹣1≠1,解得x的范圍.【詳解】解:根據(jù)分式有意義的條件得:2x+3≠1解得:故答案為【點睛】本題考查了函數(shù)自變量取值范圍的求法.要使得本題函數(shù)式子有意義,必須滿足分母不等于1.15、a1【解析】

根據(jù)同底數(shù)冪相除,底數(shù)不變指數(shù)相減計算即可【詳解】a6÷a1=a6﹣1=a1.故答案是a1【點睛】同底數(shù)冪的除法運算性質(zhì)16、1【解析】試題分析:首先進行通分,然后再進行因式分解,從而進行約分得出答案.原式=.三、解答題(共8題,共72分)17、-1,-1,0,1,1【解析】分析:先求出不等式組的解集,然后求出整數(shù)解.詳解:,由不等式①,得:x≥﹣1,由不等式②,得:x<3,故原不等式組的解集是﹣1≤x<3,∴不等式組的整數(shù)解是:﹣1、﹣1、0、1、1.點睛:本題考查了解一元一次不等式的整數(shù)解,解答本題的關(guān)鍵是明確解一元一次不等式組的方法.18、(1)見解析;(2)證明見解析.【解析】

(1)利用線段垂直平分線的作法,分別以A,B為端點,大于為半徑作弧,得出直線l即可;

(2)利用利用平行線的性質(zhì)以及平行線分線段成比例定理得出點D是AC的中點,進而得出答案.【詳解】解:(1)如圖所示:直線l即為所求;

(2)證明:∵點H是AB的中點,且DH⊥AB,∴DH∥BC,∴點D是AC的中點,∵∴AB=2DH.【點睛】考查作圖—基本作圖,線段垂直平分線的性質(zhì),等腰三角形的性質(zhì)等,熟練掌握垂直平分線的性質(zhì)是解題的性質(zhì).19、(1)詳見解析;(2)6【解析】

(1)連接CD,證明即可得到結(jié)論;(2)設(shè)圓O的半徑為r,在Rt△BDO中,運用勾股定理即可求出結(jié)論.【詳解】(1)證明:連接CD,∵∴∵∴.(2)設(shè)圓O的半徑為,,設(shè).【點睛】本題綜合考查了切線的性質(zhì)和判定及勾股定理的綜合運用.綜合性比較強,對于學(xué)生的能力要求比較高.20、(1)y=24x+1.(2)點C為線段AP的中點.(3)存在點D,使四邊形BCPD為菱形,點D【解析】試題分析:(1)由點A與點B關(guān)于y軸對稱,可得AO=BO,再由A的坐標(biāo)求得B點的坐標(biāo),從而求得點P的坐標(biāo),將P坐標(biāo)代入反比例解析式求出m的值,即可確定出反比例解析式,將A與P坐標(biāo)代入一次函數(shù)解析式求出k與b的值,確定出一次函數(shù)解析式;(2)由AO=BO,PB∥CO,即可證得結(jié)論;(3)假設(shè)存在這樣的D點,使四邊形BCPD為菱形,過點C作CD平行于x軸,交PB于點E,交反比例函數(shù)y=-8試題解析:(1)∵點A與點B關(guān)于y軸對稱,∴AO=BO,∵A(-4,0),∴B(4,0),∴P(4,2),把P(4,2)代入y=mx得m∴反比例函數(shù)的解析式:y=8x把A(-4,0),P(4,2)代入y=kx+b得:{0=-4k+b2=4k+b,解得:所以一次函數(shù)的解析式:y=24x(2)∵點A與點B關(guān)于y軸對稱,∴OA=OB∵PB丄x軸于點B,∴∠PBA=90°,∵∠COA=90°,∴PB∥CO,∴點C為線段AP的中點.(3)存在點D,使四邊形BCPD為菱形∵點C為線段AP的中點,∴BC=12∴BC和PC是菱形的兩條邊由y=14x+1,可得點C過點C作CD平行于x軸,交PB于點E,交反比例函數(shù)y=-8x的圖象于點分別連結(jié)PD、BD,∴點D(8,1),BP⊥CD∴PE=BE=1,∴CE=DE=4,∴PB與CD互相垂直平分,∴四邊形BCPD為菱形.∴點D(8,1)即為所求.21、(2)1【解析】試題分析:(1)連結(jié)OC,由=,根據(jù)圓周角定理得∠FAC=∠BAC,而∠OAC=∠OCA,則∠FAC=∠OCA,可判斷OC∥AF,由于CD⊥AF,所以O(shè)C⊥CD,然后根據(jù)切線的判定定理得到CD是⊙O的切線;(2)連結(jié)BC,由AB為直徑得∠ACB=90°,由==,得∠BOC=60°,則∠BAC=30°,所以∠DAC=30°,在Rt△ADC中,利用含30°的直角三角形三邊的關(guān)系得AC=2CD=1,在Rt△ACB中,利用含30°的直角三角形三邊的關(guān)系得BC=AC=1,AB=2BC=8,所以⊙O的半徑為1.試題解析:(1)證明:連結(jié)OC,如圖,∵=∴∠FAC=∠BAC∵OA=OC∴∠OAC=∠OCA∴∠FAC=∠OCA∴OC∥AF∵CD⊥AF∴OC⊥CD∴CD是⊙O的切線(2)解:連結(jié)BC,如圖∵AB為直徑∴∠ACB=90°∵==∴∠BOC=×180°=60°∴∠BAC=30°∴∠DAC=30°在Rt△ADC中,CD=2∴AC=2CD=1在Rt△ACB中,BC=AC=×1=1∴AB=2BC=8∴⊙O的半徑為1.考點:圓周角定理,切線的判定定理,30°的直角三角形三邊的關(guān)系22、(1)見解析;(2)【解析】

(1)根據(jù)矩形的性質(zhì)可得AB=CD,∠C=∠A=90°,再根據(jù)折疊的性質(zhì)可得DE=CD,∠C=∠E=90°,然后利用“角角邊”證明即可;

(2)設(shè)AF=x,則BF=DF=8-x,根據(jù)勾股定理列方程求解即可.【詳解】(1)證明:在矩形ABCD中,AB=CD,∠A=∠C=90°,由折疊得:DE=CD,∠C=∠E=90°,∴AB=DE,∠A=∠E=90°,∵∠AFB=∠EFD,∴△ABF≌△EDF(AAS);(2)解:∵△ABF≌△EDF,∴BF=DF,設(shè)AF=x,則BF=DF=8﹣x,在Rt△ABF中,由勾股定理得:BF2=AB2+AF2,即(8﹣

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論