版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
山西農(nóng)業(yè)大附屬中學(xué)中考猜題數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.花園甜瓜是樂陵的特色時(shí)令水果.甜瓜一上市,水果店的小李就用3000元購進(jìn)了一批甜瓜,前兩天以高于進(jìn)價(jià)40%的價(jià)格共賣出150kg,第三天她發(fā)現(xiàn)市場上甜瓜數(shù)量陡增,而自己的甜瓜賣相已不大好,于是果斷地將剩余甜瓜以低于進(jìn)價(jià)20%的價(jià)格全部售出,前后一共獲利750元,則小李所進(jìn)甜瓜的質(zhì)量為()kg.A.180 B.200 C.240 D.3002.如圖①是半徑為2的半圓,點(diǎn)C是弧AB的中點(diǎn),現(xiàn)將半圓如圖②方式翻折,使得點(diǎn)C與圓心O重合,則圖中陰影部分的面積是()A. B.﹣ C.2+ D.2﹣3.如圖,已知△ABC中,∠ABC=45°,F(xiàn)是高AD和BE的交點(diǎn),CD=4,則線段DF的長度為()A. B.4 C. D.4.在△ABC中,∠C=90°,AC=9,sinB=,則AB=(
)A.15
B.12
C.9
D.65.A、B兩地相距180km,新修的高速公路開通后,在A、B兩地間行駛的長途客車平均車速提高了50%,而從A地到B地的時(shí)間縮短了1h.若設(shè)原來的平均車速為xkm/h,則根據(jù)題意可列方程為A. B.C. D.6.如圖⊙O的直徑垂直于弦,垂足是,,,的長為()A. B.4 C. D.87.下列判斷錯(cuò)誤的是()A.對角線相等的四邊形是矩形B.對角線相互垂直平分的四邊形是菱形C.對角線相互垂直且相等的平行四邊形是正方形D.對角線相互平分的四邊形是平行四邊形8.已知點(diǎn)A(1﹣2x,x﹣1)在第二象限,則x的取值范圍在數(shù)軸上表示正確的是()A. B.C. D.9.如圖,AB是⊙O的直徑,點(diǎn)E為BC的中點(diǎn),AB=4,∠BED=120°,則圖中陰影部分的面積之和為()A.1 B. C. D.10.不透明的袋子中裝有形狀、大小、質(zhì)地完全相同的6個(gè)球,其中4個(gè)黑球、2個(gè)白球,從袋子中一次摸出3個(gè)球,下列事件是不可能事件的是()A.摸出的是3個(gè)白球 B.摸出的是3個(gè)黑球C.摸出的是2個(gè)白球、1個(gè)黑球 D.摸出的是2個(gè)黑球、1個(gè)白球二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.已知圖中Rt△ABC,∠B=90°,AB=BC,斜邊AC上的一點(diǎn)D,滿足AD=AB,將線段AC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)α(0°<α<360°),得到線段AC’,連接DC’,當(dāng)DC’//BC時(shí),旋轉(zhuǎn)角度α的值為_________,12.分解因式:.13.如圖,⊙O的半徑OD⊥弦AB于點(diǎn)C,連結(jié)AO并延長交⊙O于點(diǎn)E,連結(jié)EC.若AB=8,CD=2,則EC的長為_______.14.如圖,BD是⊙O的直徑,BA是⊙O的弦,過點(diǎn)A的切線交BD延長線于點(diǎn)C,OE⊥AB于E,且AB=AC,若CD=2,則OE的長為_____.15.如圖,在圓心角為90°的扇形OAB中,半徑OA=1cm,C為的中點(diǎn),D、E分別是OA、OB的中點(diǎn),則圖中陰影部分的面積為_____cm1.16.將161000用科學(xué)記數(shù)法表示為1.61×10n,則n的值為________.三、解答題(共8題,共72分)17.(8分)在數(shù)學(xué)課上,老師提出如下問題:小楠同學(xué)的作法如下:老師說:“小楠的作法正確.”請回答:小楠的作圖依據(jù)是______________________________________________.18.(8分)如圖,已知AB是⊙O的直徑,點(diǎn)C、D在⊙O上,點(diǎn)E在⊙O外,∠EAC=∠D=60°.求∠ABC的度數(shù);求證:AE是⊙O的切線;當(dāng)BC=4時(shí),求劣弧AC的長.19.(8分)如圖,AB是⊙O的一條弦,E是AB的中點(diǎn),過點(diǎn)E作EC⊥OA于點(diǎn)C,過點(diǎn)B作⊙O的切線交CE的延長線于點(diǎn)D.(1)求證:DB=DE;(2)若AB=12,BD=5,求⊙O的半徑.20.(8分)計(jì)算:﹣(﹣2)2+|﹣3|﹣20180×21.(8分)如圖,可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤被它的兩條直徑分成了四個(gè)分別標(biāo)有數(shù)字的扇形區(qū)域,其中標(biāo)有數(shù)字“1”的扇形圓心角為120°.轉(zhuǎn)動(dòng)轉(zhuǎn)盤,待轉(zhuǎn)盤自動(dòng)停止后,指針指向一個(gè)扇形的內(nèi)部,則該扇形內(nèi)的數(shù)字即為轉(zhuǎn)出的數(shù)字,此時(shí),稱為轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次(若指針指向兩個(gè)扇形的交線,則不計(jì)轉(zhuǎn)動(dòng)的次數(shù),重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤,直到指針指向一個(gè)扇形的內(nèi)部為止)(1)轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,求轉(zhuǎn)出的數(shù)字是-2的概率;(2)轉(zhuǎn)動(dòng)轉(zhuǎn)盤兩次,用樹狀圖或列表法求這兩次分別轉(zhuǎn)出的數(shù)字之積為正數(shù)的概率.22.(10分)化簡:.23.(12分)如圖,平面直角坐標(biāo)系中,直線AB:交y軸于點(diǎn)A(0,1),交x軸于點(diǎn)B.直線x=1交AB于點(diǎn)D,交x軸于點(diǎn)E,P是直線x=1上一動(dòng)點(diǎn),且在點(diǎn)D的上方,設(shè)P(1,n).求直線AB的解析式和點(diǎn)B的坐標(biāo);求△ABP的面積(用含n的代數(shù)式表示);當(dāng)S△ABP=2時(shí),以PB為邊在第一象限作等腰直角三角形BPC,求出點(diǎn)C的坐標(biāo).24.如圖,已知一次函數(shù)y=kx+b的圖象與x軸交于點(diǎn)A,與反比例函數(shù)(x<0)的圖象交于點(diǎn)B(﹣2,n),過點(diǎn)B作BC⊥x軸于點(diǎn)C,點(diǎn)D(3﹣3n,1)是該反比例函數(shù)圖象上一點(diǎn).求m的值;若∠DBC=∠ABC,求一次函數(shù)y=kx+b的表達(dá)式.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
根據(jù)題意去設(shè)所進(jìn)烏梅的數(shù)量為,根據(jù)前后一共獲利元,列出方程,求出x值即可.【詳解】解:設(shè)小李所進(jìn)甜瓜的數(shù)量為,根據(jù)題意得:,解得:,經(jīng)檢驗(yàn)是原方程的解.答:小李所進(jìn)甜瓜的數(shù)量為200kg.故選:B.【點(diǎn)睛】本題考查的是分式方程的應(yīng)用,解題關(guān)鍵在于對等量關(guān)系的理解,進(jìn)而列出方程即可.2、D【解析】
連接OC交MN于點(diǎn)P,連接OM、ON,根據(jù)折疊的性質(zhì)得到OP=OM,得到∠POM=60°,根據(jù)勾股定理求出MN,結(jié)合圖形計(jì)算即可.【詳解】解:連接OC交MN于點(diǎn)P,連接OM、ON,由題意知,OC⊥MN,且OP=PC=1,在Rt△MOP中,∵OM=2,OP=1,∴cos∠POM==,AC==,∴∠POM=60°,MN=2MP=2,∴∠AOB=2∠AOC=120°,則圖中陰影部分的面積=S半圓-2S弓形MCN=×π×22-2×(-×2×1)=2-π,故選D.【點(diǎn)睛】本題考查了軸對稱的性質(zhì)的運(yùn)用、勾股定理的運(yùn)用、三角函數(shù)值的運(yùn)用、扇形的面積公式的運(yùn)用、三角形的面積公式的運(yùn)用,解答時(shí)運(yùn)用軸對稱的性質(zhì)求解是關(guān)鍵.3、B【解析】
求出AD=BD,根據(jù)∠FBD+∠C=90°,∠CAD+∠C=90°,推出∠FBD=∠CAD,根據(jù)ASA證△FBD≌△CAD,推出CD=DF即可.【詳解】解:∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEB=∠ADC=90°,∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,∵∠AFE=∠BFD,∴∠EAF=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABC,∴AD=BD,在△ADC和△BDF中,∴△ADC≌△BDF,∴DF=CD=4,故選:B.【點(diǎn)睛】此題主要考查了全等三角形的判定,關(guān)鍵是找出能使三角形全等的條件.4、A【解析】
根據(jù)三角函數(shù)的定義直接求解.【詳解】在Rt△ABC中,∠C=90°,AC=9,∵,∴,解得AB=1.故選A5、A【解析】
直接利用在A,B兩地間行駛的長途客車平均車速提高了50%,而從A地到B地的時(shí)間縮短了1h,利用時(shí)間差值得出等式即可.【詳解】解:設(shè)原來的平均車速為xkm/h,則根據(jù)題意可列方程為:﹣=1.故選A.【點(diǎn)睛】本題主要考查了由實(shí)際問題抽象出分式方程,根據(jù)題意得出正確等量關(guān)系是解題的關(guān)鍵.6、C【解析】
∵直徑AB垂直于弦CD,∴CE=DE=CD,∵∠A=22.5°,∴∠BOC=45°,∴OE=CE,設(shè)OE=CE=x,∵OC=4,∴x2+x2=16,解得:x=2,即:CE=2,∴CD=4,故選C.7、A【解析】
利用菱形的判定定理、矩形的判定定理、平行四邊形的判定定理、正方形的判定定理分別對每個(gè)選項(xiàng)進(jìn)行判斷后即可確定正確的選項(xiàng).【詳解】解:、對角線相等的四邊形是矩形,錯(cuò)誤;、對角線相互垂直平分的四邊形是菱形,正確;、對角線相互垂直且相等的平行四邊形是正方形,正確;、對角線相互平分的四邊形是平行四邊形,正確;故選:.【點(diǎn)睛】本題考查了命題與定理的知識(shí),解題的關(guān)鍵是能夠了解矩形和菱形的判定定理,難度不大.8、B【解析】
先分別求出每一個(gè)不等式的解集,再根據(jù)口訣:同大取大、同小取小、大小小大中間找、大大小小無解了確定不等式組的解集.【詳解】解:根據(jù)題意,得:,解不等式①,得:x>,解不等式②,得:x>1,∴不等式組的解集為x>1,故選:B.【點(diǎn)睛】本題主要考查解一元一次不等式組,關(guān)鍵要掌握解一元一次不等式的方法,牢記確定不等式組解集方法.9、C【解析】連接AE,OD,OE.∵AB是直徑,∴∠AEB=90°.又∵∠BED=120°,∴∠AED=30°.∴∠AOD=2∠AED=60°.∵OA=OD.∴△AOD是等邊三角形.∴∠A=60°.又∵點(diǎn)E為BC的中點(diǎn),∠AED=90°,∴AB=AC.∴△ABC是等邊三角形,∴△EDC是等邊三角形,且邊長是△ABC邊長的一半2,高是.∴∠BOE=∠EOD=60°,∴和弦BE圍成的部分的面積=和弦DE圍成的部分的面積.∴陰影部分的面積=.故選C.10、A【解析】由題意可知,不透明的袋子中總共有2個(gè)白球,從袋子中一次摸出3個(gè)球都是白球是不可能事件,故選B.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、15或255°【解析】如下圖,設(shè)直線DC′與AB相交于點(diǎn)E,∵Rt△ABC中,∠B=90°,AB=BC,DC′//BC,∴∠AED=∠ABC=90°,∠ADE=∠ACB=∠BAC=45°,AB=AC,∴AE=AD,又∵AD=AB,AC′=AC,∴AE=AB=AC=AC′,∴∠C′=30°,∴∠EAC′=60°,∴∠CAC′=60°-45°=15°,即當(dāng)DC′∥BC時(shí),旋轉(zhuǎn)角=15°;同理,當(dāng)DC′′∥BC時(shí),旋轉(zhuǎn)角=180°-45°-60°=255°;綜上所述,當(dāng)旋轉(zhuǎn)角=15°或255°時(shí),DC′//BC.故答案為:15°或255°.12、【解析】分析:要將一個(gè)多項(xiàng)式分解因式的一般步驟是首先看各項(xiàng)有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方公式或平方差公式,若是就考慮用公式法繼續(xù)分解因式.因此,先提取公因式后繼續(xù)應(yīng)用平方差公式分解即可:.13、【解析】
設(shè)⊙O半徑為r,根據(jù)勾股定理列方程求出半徑r,由勾股定理依次求BE和EC的長.【詳解】連接BE,設(shè)⊙O半徑為r,則OA=OD=r,OC=r-2,
∵OD⊥AB,
∴∠ACO=90°,
AC=BC=AB=4,
在Rt△ACO中,由勾股定理得:r2=42+(r-2)2,
r=5,
∴AE=2r=10,
∵AE為⊙O的直徑,
∴∠ABE=90°,
由勾股定理得:BE=6,
在Rt△ECB中,EC=.故答案是:.【點(diǎn)睛】考查的是垂徑定理及勾股定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形,利用勾股定理求解是解答此題的關(guān)鍵.14、【解析】
連接OA,所以∠OAC=90°,因?yàn)锳B=AC,所以∠B=∠C,根據(jù)圓周角定理可知∠AOD=2∠B=2∠C,故可求出∠B和∠C的度數(shù),在Rt△OAC中,求出OA的值,再在Rt△OAE中,求出OE的值,得到答案.【詳解】連接OA,由題意可知∠OAC=90°,∵AB=AC,∴∠B=∠C,根據(jù)圓周角定理可知∠AOD=2∠B=2∠C,∵∠OAC=90°∴∠C+∠AOD=90°,∴∠C+2∠C=90°,故∠C=30°=∠B,∴在Rt△OAC中,sin∠C==,∴OC=2OA,∵OA=OD,∴OD+CD=2OA,∴CD=OA=2,∵OB=OA,∴∠OAE=∠B=30°,∴在Rt△OAE中,sin∠OAE==,∴OA=2OE,∴OE=OA=,故答案為.【點(diǎn)睛】本題主要考查了圓周角定理,角的轉(zhuǎn)換,以及在直角三角形中的三角函數(shù)的運(yùn)用,解本題的要點(diǎn)在于求出OA的值,從而利用直角三角形的三角函數(shù)的運(yùn)用求出答案.15、π+﹣【解析】試題分析:如圖,連接OC,EC,由題意得△OCD≌△OCE,OC⊥DE,DE==,所以S四邊形ODCE=×1×=,S△OCD=,又S△ODE=×1×1=,S扇形OBC==,所以陰影部分的面積為:S扇形OBC+S△OCD﹣S△ODE=+﹣;故答案為.考點(diǎn):扇形面積的計(jì)算.16、5【解析】
【科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對值<1時(shí),n是負(fù)數(shù).【詳解】∵161000=1.61×105.∴n=5.故答案為5.【點(diǎn)睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.三、解答題(共8題,共72分)17、兩組對邊分別相等的四邊形是平行四邊形;平行四邊形的對角線互相平分;兩點(diǎn)確定一條直線.【解析】
根據(jù)對角線互相平分的四邊形是平行四邊形可判斷四邊形ABCP為平行四邊形,再根據(jù)平行四邊形的性質(zhì):對角線互相平分即可得到BD=CD,由此可得到小楠的作圖依據(jù).【詳解】解:由作圖的步驟可知平行四邊形可判斷四邊形ABCP為平行四邊形,再根據(jù)平行四邊形的性質(zhì):對角線互相平分即可得到BD=CD,所以小楠的作圖依據(jù)是:兩組對邊分別相等的四邊形是平行四邊形;平行四邊形的對角線互相平分;兩點(diǎn)確定一條直線.故答案為:兩組對邊分別相等的四邊形是平行四邊形;平行四邊形的對角線互相平分;兩點(diǎn)確定一條直線.【點(diǎn)睛】本題考查了作圖﹣復(fù)雜作圖:復(fù)雜作圖是在五種基本作圖的基礎(chǔ)上進(jìn)行作圖,一般是結(jié)合了幾何圖形的性質(zhì)和基本作圖方法.解決此類題目的關(guān)鍵是熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復(fù)雜作圖拆解成基本作圖,逐步操作.也考查了平行四邊形的判定和性質(zhì).18、(1)60°;(2)證明略;(3)【解析】
(1)根據(jù)∠ABC與∠D都是劣弧AC所對的圓周角,利用圓周角定理可證出∠ABC=∠D=60°;
(2)根據(jù)AB是⊙O的直徑,利用直徑所對的圓周角是直角得到∠ACB=90°,結(jié)合∠ABC=60°求得∠BAC=30°,從而推出∠BAE=90°,即OA⊥AE,可得AE是⊙O的切線;
(3)連結(jié)OC,證出△OBC是等邊三角形,算出∠BOC=60°且⊙O的半徑等于4,可得劣弧AC所對的圓心角∠AOC=120°,再由弧長公式加以計(jì)算,可得劣弧AC的長.【詳解】(1)∵∠ABC與∠D都是弧AC所對的圓周角,∴∠ABC=∠D=60°;(2)∵AB是⊙O的直徑,∴∠ACB=90°.∴∠BAC=30°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE,∴AE是⊙O的切線;(3)如圖,連接OC,∵OB=OC,∠ABC=60°,∴△OBC是等邊三角形,∴OB=BC=4,∠BOC=60°,∴∠AOC=120°,∴劣弧AC的長為==.【點(diǎn)睛】本題考查了切線長定理及弧長公式,熟練掌握定理及公式是解題的關(guān)鍵.19、(1)證明見解析;(2)【解析】試題分析:(1)由切線性質(zhì)及等量代換推出∠4=∠5,再利用等角對等邊可得出結(jié)論;(2)由已知條件得出sin∠DEF和sin∠AOE的值,利用對應(yīng)角的三角函數(shù)值相等推出結(jié)論.試題解析:(1)∵DC⊥OA,∴∠1+∠3=90°,∵BD為切線,∴OB⊥BD,∴∠2+∠5=90°,∵OA=OB,∴∠1=∠2,∵∠3=∠4,∴∠4=∠5,在△DEB中,∠4=∠5,∴DE=DB.(2)作DF⊥AB于F,連接OE,∵DB=DE,∴EF=BE=3,在RT△DEF中,EF=3,DE=BD=5,EF=3,∴DF=∴sin∠DEF==,∵∠AOE=∠DEF,∴在RT△AOE中,sin∠AOE=,∵AE=6,∴AO=.【點(diǎn)睛】本題考查了圓的性質(zhì),切線定理,三角形相似,三角函數(shù)等知識(shí),結(jié)合圖形正確地選擇相應(yīng)的知識(shí)點(diǎn)與方法進(jìn)行解題是關(guān)鍵.20、﹣1【解析】
根據(jù)乘方的意義、絕對值的性質(zhì)、零指數(shù)冪的性質(zhì)及立方根的定義依次計(jì)算各項(xiàng)后,再根據(jù)有理數(shù)的運(yùn)算法則進(jìn)行計(jì)算即可.【詳解】原式=﹣1+3﹣1×3=﹣1.【點(diǎn)睛】本題考查了乘方的意義、絕對值的性質(zhì)、零指數(shù)冪的性質(zhì)、立方根的定義及有理數(shù)的混合運(yùn)算,熟知乘方的意義、絕對值的性質(zhì)、零指數(shù)冪的性質(zhì)、立方根的定義及有理數(shù)的混合運(yùn)算順序是解決問題的關(guān)鍵.21、(1);(2).【解析】【分析】(1)根據(jù)題意可求得2個(gè)“-2”所占的扇形圓心角的度數(shù),再利用概率公式進(jìn)行計(jì)算即可得;(2)由題意可得轉(zhuǎn)出“1”、“3”、“-2”的概率相同,然后列表得到所有可能的情況,再找出符合條件的可能性,根據(jù)概率公式進(jìn)行計(jì)算即可得.【詳解】(1)由題意可知:“1”和“3”所占的扇形圓心角為120°,所以2個(gè)“-2”所占的扇形圓心角為360°-2×120°=120°,∴轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,求轉(zhuǎn)出的數(shù)字是-2的概率為=;(2)由(1)可知,該轉(zhuǎn)盤轉(zhuǎn)出“1”、“3”、“-2”的概率相同,均為,所有可能性如下表所示:第一次第二次1-231(1,1)(1,-2)(1,3)-2(-2,1)(-2,-2)(-2,3)3(3,1)(3,-2)(3,3)由上表可知:所有可能的結(jié)果共9種,其中數(shù)字之積為正數(shù)的的有5種,其概率為.【點(diǎn)睛】本題考查了列表法或樹狀圖法求概率,用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.22、【解析】
原式第一項(xiàng)利用完全平方公式化簡,第二項(xiàng)利用單項(xiàng)式乘多項(xiàng)式法則計(jì)算,去括號(hào)合并即可得到結(jié)果.【詳解】解:原式.23、(1)AB的解析式是y=-x+1.點(diǎn)B(3,0).(2)n-1;(3)(3,4)或(5,2)或(3,2).【解析】試題分析:(1)把A的坐標(biāo)代入直線AB的解析式,即可求得b的值,然后在解析式中,令y=0,求得x的值,即可求得B的坐標(biāo);(2)過點(diǎn)A作AM⊥PD,垂足為M,求得AM的長,即可求得△BPD和△PAB的面積,二者的和即可求得;(3)當(dāng)S△ABP=2時(shí),n-1=2,解得n=2,則∠OBP=45°,然后分A、B、P分別是直角頂點(diǎn)求解.試題解析:(1)∵y=-x+b經(jīng)過A(0,1),∴b=1,∴直線AB的解析式是y=-x+1.當(dāng)y=0時(shí),0=-x+1,解得x=3,∴點(diǎn)B(3,0).(2)過點(diǎn)A作AM⊥PD,垂足為M,則有AM=1,∵x=1時(shí),y=-x+1=,P在點(diǎn)D的上方,∴PD=n-,S△APD=PD?AM=×1×(n-)=n-由點(diǎn)B(3,0),可知點(diǎn)B到直線x=1的距離為2,即△BDP的邊PD上的高長為2,∴S△BPD=PD×2=n-,∴S△PAB=S△APD+S△BPD=n-+n-=n-1;(3)當(dāng)S△ABP=2時(shí),n-1=2,解得n=2,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度地暖安裝個(gè)人勞務(wù)分包合同(個(gè)性化定制)3篇
- 云南財(cái)經(jīng)職業(yè)學(xué)院《小學(xué)教師書法技能實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年度二零二五年度綠色能源研發(fā)中心委托經(jīng)營協(xié)議3篇
- 2025年度二零二五年度房產(chǎn)轉(zhuǎn)讓與社區(qū)文化活動(dòng)組織執(zhí)行合同3篇
- 2025年度國家公派留學(xué)項(xiàng)目學(xué)生海外安全教育與保障協(xié)議3篇
- 2025年度二零二五年度農(nóng)機(jī)作業(yè)與農(nóng)業(yè)產(chǎn)業(yè)鏈整合合同
- 2025年度高校畢業(yè)生就業(yè)實(shí)習(xí)基地共建協(xié)議3篇
- 2025年度航空航天試驗(yàn)設(shè)備委托采購與服務(wù)保障協(xié)議
- 2025年度房地產(chǎn)居間服務(wù)合同的法律規(guī)定與風(fēng)險(xiǎn)防范3篇
- 2025年度非全日制員工勞動(dòng)合同法律風(fēng)險(xiǎn)識(shí)別與防控2篇
- 【企業(yè)盈利能力探析的國內(nèi)外文獻(xiàn)綜述2400字】
- 全國職業(yè)院校技能大賽高職組(智慧物流賽項(xiàng))備賽試題庫(含答案)
- 職業(yè)生涯規(guī)劃-體驗(yàn)式學(xué)習(xí)智慧樹知到期末考試答案章節(jié)答案2024年華僑大學(xué)
- 醫(yī)學(xué)生創(chuàng)新創(chuàng)業(yè)基礎(chǔ)智慧樹知到期末考試答案2024年
- 大學(xué)生國家安全教育智慧樹知到期末考試答案2024年
- 同濟(jì)大學(xué)信紙
- 北師大版三年級(jí)數(shù)學(xué)上冊認(rèn)識(shí)小數(shù)復(fù)習(xí)課件ppt
- 2019版外研社高中英語必修二單詞默寫表
- 美的分權(quán)規(guī)范手冊
- 混凝土連續(xù)箱梁滿堂支架現(xiàn)澆施工工藝標(biāo)準(zhǔn)By阿拉蕾
- 教程學(xué)習(xí)基礎(chǔ)網(wǎng)站上的mike urban
評(píng)論
0/150
提交評(píng)論