天津市蘆臺一中2024屆高一數(shù)學第二學期期末監(jiān)測試題含解析_第1頁
天津市蘆臺一中2024屆高一數(shù)學第二學期期末監(jiān)測試題含解析_第2頁
天津市蘆臺一中2024屆高一數(shù)學第二學期期末監(jiān)測試題含解析_第3頁
天津市蘆臺一中2024屆高一數(shù)學第二學期期末監(jiān)測試題含解析_第4頁
天津市蘆臺一中2024屆高一數(shù)學第二學期期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

天津市蘆臺一中2024屆高一數(shù)學第二學期期末監(jiān)測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設平面向量,,若,則等于()A. B. C. D.2.設直線l與平面平行,直線m在平面上,那么()A.直線l不平行于直線m B.直線l與直線m異面C.直線l與直線m沒有公共點 D.直線l與直線m不垂直3.如圖,測量河對岸的塔高AB時可以選與塔底B在同一水平面內(nèi)的兩個測點C與D,測得,,CD=30,并在點C測得塔頂A的仰角為60°,則塔高AB等于A. B. C. D.4.如圖,為正方體,下面結(jié)論錯誤的是()A.異面直線與所成的角為45° B.平面C.平面平面 D.異面直線與所成的角為45°5.若角的終邊與單位圓交于點,則()A. B. C. D.不存在6.在中,是邊上一點,,且,則的值為()A. B. C. D.7.已知中,,,的對邊分別是,,,且,,,則邊上的中線的長為()A. B.C.或 D.或8.在區(qū)間內(nèi)任取一個實數(shù),則此數(shù)大于2的概率為()A. B. C. D.9.某數(shù)學競賽小組有3名男同學和2名女同學,現(xiàn)從這5名同學中隨機選出2人參加數(shù)學競賽(每人被選到的可能性相同).則選出的2人中恰有1名男同學和1名女同學的概率為()A. B. C. D.10.計算的值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的最小正周期是________12.已知,,,則的最小值為__________.13.若,則實數(shù)的值為_______.14.若,則=_________15.平面⊥平面,,,,直線,則直線與的位置關(guān)系是___.16.某中學調(diào)查了某班全部45名同學參加書法社團和演講社團的情況,數(shù)據(jù)如下表所示(單位:人).參加書法社團未參加書法社團參加演講社團85未參加演講社團230若從該班隨機選l名同學,則該同學至少參加上述一個社團的概率為__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.(Ⅰ)已知向量,求與的夾角的余弦值;(Ⅱ)已知角終邊上一點,求的值.18.已知點,圓.(1)求過點M的圓的切線方程;(2)若直線與圓相交于A,B兩點,且弦AB的長為,求的值.19.如圖,四邊形ABCD是平行四邊形,點E,F(xiàn),G分別為線段BC,PB,AD的中點.(1)證明:EF∥平面PAC;(2)證明:平面PCG∥平面AEF;(3)在線段BD上找一點H,使得FH∥平面PCG,并說明理由.20.如果有窮數(shù)列(m為正整數(shù))滿足,即,那么我們稱其為對稱數(shù)列.(1)設數(shù)列是項數(shù)為7的對稱數(shù)列,其中,為等差數(shù)列,且,依次寫出數(shù)列的各項;(2)設數(shù)列是項數(shù)為(正整數(shù))的對稱數(shù)列,其中是首項為50,公差為-4的等差數(shù)列.記數(shù)列的各項和為數(shù)列,當k為何值時,取得最大值?并求出此最大值;(3)對于確定的正整數(shù),寫出所有項數(shù)不超過2m的對稱數(shù)列,使得依次為該數(shù)列中連續(xù)的項.當時,求其中一個數(shù)列的前2015項和.21.如圖,一輛汽車在一條水平的公路上向正西行駛,到A處時測得公路北側(cè)遠處一山頂D在西偏北的方向上,仰角為,行駛4km后到達B處,測得此山頂在西偏北的方向上.(1)求此山的高度(單位:km);(2)設汽車行駛過程中仰望山頂D的最大仰角為,求.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】分析:由向量垂直的條件,求解,再由向量的模的公式和向量的數(shù)量積的運算,即可求解結(jié)果.詳解:由題意,平面向量,且,所以,所以,即,又由,所以,故選D.點睛:本題主要考查了向量的數(shù)量積的運算和向量模的求解,其中解答中熟記平面向量的數(shù)量積的運算公式和向量模的計算公式是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎題.2、C【解析】

由題設條件,得到直線與直線異面或平行,進而得到答案.【詳解】由題意,因為直線與平面平行,直線在平面上,所以直線與直線異面或平行,即直線與直線沒有公共點,故選C.【點睛】本題主要考查了空間中直線與直線只見那的位置關(guān)系的判定及應用,以及直線與平面平行的應用,著重考查了推理與論證能力,屬于基礎題.3、D【解析】在中,由正弦定理得,解得在中,4、A【解析】

根據(jù)正方體性質(zhì),依次證明線面平行和面面平行,根據(jù)直線的平行關(guān)系求異面直線的夾角.【詳解】根據(jù)正方體性質(zhì),,所以異面直線與所成的角等于,,,所以不等于45°,所以A選項說法不正確;,四邊形為平行四邊形,,平面,平面,所以平面,所以B選項說法正確;同理可證:平面,是平面內(nèi)兩條相交直線,所以平面平面,所以C選項說法正確;,異面直線與所成的角等于,所以D選項說法正確.故選:A【點睛】此題考查線面平行和面面平行的判定,根據(jù)平行關(guān)系求異面直線的夾角,考查空間線線平行和線面平行關(guān)系的掌握5、B【解析】

由三角函數(shù)的定義可得:,得解.【詳解】解:在單位圓中,,故選B.【點睛】本題考查了三角函數(shù)的定義,屬基礎題.6、D【解析】

根據(jù),用基向量表示,然后與題目條件對照,即可求出.【詳解】由在中,是邊上一點,,則,即,故選.【點睛】本題主要考查了平面向量基本定理的應用及向量的線性運算.7、C【解析】

由已知利用余弦定理可得,解得a值,由已知可求中線,在中,由余弦定理即可計算AB邊上中線的長.【詳解】解:,由余弦定理,可得,整理可得:,解得或1.如圖,CD為AB邊上的中線,則,在中,由余弦定理,可得:,或,解得AB邊上的中線或.故選C.【點睛】本題考查余弦定理在解三角形中的應用,考查了數(shù)形結(jié)合思想和轉(zhuǎn)化思想,屬于基礎題.8、D【解析】

根據(jù)幾何概型長度型直接求解即可.【詳解】根據(jù)幾何概型可知,所求概率為:本題正確選項:【點睛】本題考查幾何概型概率問題的求解,屬于基礎題.9、A【解析】

把5名學生編號,然后寫出任取2人的所有可能,按要求計數(shù)后可得概率.【詳解】3名男生編號為,兩名女生編號為,任選2人的所有情形為:,,共10種,其中恰有1名男生1名女生的有共6種,所以所求概率為.【點睛】本題考查古典概型,方法是列舉法.10、D【解析】

直接由二倍角的余弦公式,即可得解.【詳解】由二倍角公式得:,故選D.【點睛】本題考查了二倍角的余弦公式,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

先利用二倍角余弦公式對函數(shù)解析式進行化簡整理,進而利用三角函數(shù)最小正周期的公式求得函數(shù)的最小正周期.【詳解】解:f(x)=1﹣2sin2x=cos2x∴函數(shù)最小正周期Tπ故答案為π.【點睛】本題主要考查了二倍角的化簡和三角函數(shù)的周期性及其求法.考查了三角函數(shù)的基礎的知識的應用.12、8【解析】由題意可得:則的最小值為.當且僅當時等號成立.點睛:在應用基本不等式求最值時,要把握不等式成立的三個條件,就是“一正——各項均為正;二定——積或和為定值;三相等——等號能否取得”,若忽略了某個條件,就會出現(xiàn)錯誤.13、【解析】

由得,代入方程即可求解.【詳解】,.,,,即,故填.【點睛】本題主要考查了反三角函數(shù)的定義及運算性質(zhì),屬于中檔題.14、【解析】

∵,∴∴=1×[+]=1.故答案為:1.15、【解析】

利用面面垂直的性質(zhì)定理得到平面,又直線,利用線面垂直性質(zhì)定理得.【詳解】在長方體中,設平面為平面,平面為平面,直線為直線,由于,,由面面垂直的性質(zhì)定理可得:平面,因為,由線面垂直的性質(zhì)定理,可得.【點睛】空間中點、線、面的位置關(guān)系問題,一般是利用線面平行或垂直的判定定理或性質(zhì)定理進行求解.16、【解析】

直接利用公式得到答案.【詳解】至少參加上述一個社團的人數(shù)為15故答案為【點睛】本題考查了概率的計算,屬于簡單題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)由已知分別求得及與,再由數(shù)量積求夾角計算結(jié)果;(Ⅱ)利用任意角的三角函數(shù)的定義求得sinα,再由三角函數(shù)的誘導公式化簡求值.【詳解】(Ⅰ)∵,∴,||=5,||,∴.(Ⅱ)∵P(﹣4,3)為角α終邊上一點,∴,.則sin2α.【點睛】本題考查利用數(shù)量積求向量的夾角,考查任意角的三角函數(shù)的定義,訓練了利用誘導公式化簡求值,是基礎題.18、(1)或.(2)【解析】

(1)分切線的斜率不存在與存在兩種情況分析.當斜率存在時設方程為,再根據(jù)圓心到直線的距離等于半徑求解即可.(2)利用垂徑定理根據(jù)圓心到直線的距離列出等式求解即可.【詳解】解:(1)由題意知圓心的坐標為,半徑,當過點M的直線的斜率不存在時,方程為.由圓心到直線的距離知,此時,直線與圓相切.當過點M的直線的斜率存在時,設方程為,即.由題意知,解得,∴方程為.故過點M的圓的切線方程為或.(2)∵圓心到直線的距離為,∴,解得.【點睛】本題主要考查了直線與圓相切與相交時的求解.注意直線過定點時分析斜率不存在與存在兩種情況.直線與圓相切用圓心到直線的距離等于半徑列式,直線與圓相交用垂徑定理列式.屬于中檔題.19、(1)見解析(2)見解析(3)見解析【解析】

(1)證明,EF∥平面PAC即得證;(2)證明AE∥平面PCG,EF∥平面PCG,平面PCG∥平面AEF即得證;(3)設AE,GC與BD分別交于M,N兩點,證明N點為所找的H點.【詳解】(1)證明:∵E、F分別是BC,BP中點,∴,∵PC?平面PAC,EF?平面PAC,∴EF∥平面PAC.(2)證明:∵E、G分別是BC、AD中點,∴AE∥CG,∵AE?平面PCG,CG?平面PCG,∴AE∥平面PCG,又∵EF∥PC,PC?平面PCG,EF?平面PCG,∴EF∥平面PCG,AE∩EF=E點,AE,EF?平面AEF,∴平面AEF∥平面PCG.(3)設AE,GC與BD分別交于M,N兩點,易知F,N分別是BP,BM中點,∴,∵PM?平面PGC,F(xiàn)N?平面PGC,∴FN∥平面PGC,即N點為所找的H點.【點睛】本題主要考查空間平行位置關(guān)系的證明,考查立體幾何的探究性問題的解決,意在考查學生對這些知識的理解掌握水平.20、(1)2,5,8,11,8,5,2;(2);(3)答案見詳解【解析】

(1)求出前四項的公差,然后寫出即可(2)先算出,然后(3)依題意,可寫出所有項數(shù)不超過2m的對稱數(shù)列,然后求出第一個數(shù)列的【詳解】(1)設數(shù)列的公差為,則,解得所以各項為2,5,8,11,8,5,2(2)因為是首項為50,公差為-4的等差數(shù)列所以所以所以當時取得最大值,為626(3)所有可能的對稱數(shù)列是①,②,③,④,對于①,當時,當時所以【點睛】本題是一道數(shù)列的新定義的題,考查了數(shù)列的求和和最值問題.21、(1)km.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論