




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
吉林省長(zhǎng)春市第十一高中2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測(cè)模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類(lèi)型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知向量,,若,則實(shí)數(shù)a的值為A. B.2或 C.或1 D.2.已知是不同的直線,是不同的平面,則下列說(shuō)法正確的是()A.若,則 B.若,則C.若,則 D.若,則3.函數(shù)的單調(diào)遞增區(qū)間是()A. B. C. D.4.已知函數(shù)的圖像如圖所示,關(guān)于有以下5個(gè)結(jié)論:(1);(2),;(3)將圖像上所有點(diǎn)向右平移個(gè)單位得到的圖形所對(duì)應(yīng)的函數(shù)是偶函數(shù);(4)對(duì)于任意實(shí)數(shù)x都有;(5)對(duì)于任意實(shí)數(shù)x都有;其中所有正確結(jié)論的編號(hào)是()A.(1)(2)(3) B.(1)(2)(4)(5) C.(1)(2)(4) D.(1)(3)(4)(5)5.已知兩條直線m,n,兩個(gè)平面α,β,下列命題正確是()A.m∥n,m∥α?n∥α B.α∥β,m?α,n?β?m∥nC.α⊥β,m?α,n?β?m⊥n D.α∥β,m∥n,m⊥α?n⊥β6.已知向量,滿足,在上的投影(正射影的數(shù)量)為-2,則的最小值為()A. B.10 C. D.87.在四邊形中,,,將沿折起,使平面平面,構(gòu)成三棱錐,如圖,則在三棱錐中,下列結(jié)論正確的是()A.平面平面B.平面平面C.平面平面D.平面平面8.等比數(shù)列,…的第四項(xiàng)等于(
)A.-24 B.0 C.12 D.249.同時(shí)具有性質(zhì):①圖象的相鄰兩條對(duì)稱軸間的距離是;②在上是增函數(shù)的一個(gè)函數(shù)為()A. B. C. D.10.向量,,且,則等于()A. B. C.2 D.10二、填空題:本大題共6小題,每小題5分,共30分。11.已知直線:與圓交于,兩點(diǎn),過(guò),分別作的垂線與軸交于,兩點(diǎn),若,則__________.12.在等差數(shù)列中,若,則的前13項(xiàng)之和等于______.13.在中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若,,b=1,則_____________14.已知向量,若向量與垂直,則等于_______.15.若為的最小內(nèi)角,則函數(shù)的值域?yàn)開(kāi)____.16.關(guān)于的方程只有一個(gè)實(shí)數(shù)根,則實(shí)數(shù)_____.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知函數(shù)的圖象關(guān)于直線對(duì)稱,且圖象上相鄰兩個(gè)最高點(diǎn)的距離為.(1)求與的值;(2)若,求的值.18.如圖所示,是正三角形,和都垂直于平面,且,,是的中點(diǎn),求證:(1)平面;(2).19.已知,,,求.20.如圖所示,某住宅小區(qū)的平面圖是圓心角為120°的扇形,小區(qū)的兩個(gè)出入口設(shè)置在點(diǎn)及點(diǎn)處,且小區(qū)里有一條平行于的小路,已知某人從沿走到用了10分鐘,從沿走到用了6分鐘,若此人步行的速度為每分鐘50米,求該扇形的半徑的長(zhǎng).21.已知等差數(shù)列滿足,且.(1)求數(shù)列的通項(xiàng);(2)求數(shù)列的前項(xiàng)和的最大值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】
根據(jù)題意,由向量平行的坐標(biāo)表示公式可得,解可得a的值,即可得答案.【詳解】根據(jù)題意,向量,,若,則有,解可得或1;故選C.【點(diǎn)睛】本題考查向量平行的坐標(biāo)表示方法,熟記平行的坐標(biāo)表示公式得到關(guān)于a的方程是關(guān)鍵,是基礎(chǔ)題2、D【解析】
由線面平行的判定定理即可判斷A;由線面垂直的判定定理可判斷B;由面面垂直的性質(zhì)可判斷C;由空間中垂直于同一條直線的兩平面平行可判斷D.【詳解】對(duì)于A選項(xiàng),加上條件“”結(jié)論才成立;對(duì)于B選項(xiàng),加上條件“直線和相交”結(jié)論才成立;對(duì)于C選項(xiàng),加上條件“”結(jié)論才成立.故選:D【點(diǎn)睛】本題考查空間直線與平面的位置關(guān)系,涉及線面平行的判定、線面垂直的判定、面面垂直的性質(zhì),屬于基礎(chǔ)題.3、A【解析】
先求出所有的單調(diào)遞增區(qū)間,然后與取交集即可.【詳解】因?yàn)榱畹茫核缘膯握{(diào)遞增區(qū)間是因?yàn)?,所以即函?shù)的單調(diào)遞增區(qū)間是故選:A【點(diǎn)睛】求形如的單調(diào)區(qū)間時(shí),一般利用復(fù)合函數(shù)的單調(diào)性原理“同增異減”來(lái)求出此函數(shù)的單調(diào)區(qū)間,當(dāng)時(shí),需要用誘導(dǎo)公式將函數(shù)轉(zhuǎn)化為.4、B【解析】
由圖象可觀察出的最值和周期,從而求出,將圖像上所有的點(diǎn)向右平移個(gè)單位得到的函數(shù),可判斷(3)的正誤,利用,可判斷(4)(5)的正誤.【詳解】由圖可知:,所以,,所以,即因?yàn)?,所以,所以,?1)(2)正確將圖像上所有的點(diǎn)向右平移個(gè)單位得到的函數(shù)為此函數(shù)是奇函數(shù),故(3)錯(cuò)誤因?yàn)樗躁P(guān)于直線對(duì)稱,即有故(4)正確因?yàn)樗躁P(guān)于點(diǎn)對(duì)稱,即有故(5)正確綜上可知:正確的有(1)(2)(4)(5)故選:B【點(diǎn)睛】本題考查的是三角函數(shù)的圖象及其性質(zhì),屬于中檔題.5、D【解析】
在A中,n∥α或n?α;在B中,m與n平行或異面;在C中,m與n相交、平行或異面;在D中,由線面垂直的判定定理得:α∥β,m∥n,m⊥α?n⊥β.【詳解】由兩條直線m,n,兩個(gè)平面α,β,知:在A中,m∥n,m∥α?n∥α或n?α,故A錯(cuò)誤;在B中,α∥β,m?α,n?β?m與n平行或異面,故B錯(cuò)誤;在C中,α⊥β,m?α,n?β?m與n相交、平行或異面,故C錯(cuò)誤;在D中,由線面垂直的判定定理得:α∥β,m∥n,m⊥α?n⊥β,故D正確.故選:D.【點(diǎn)評(píng)】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是中檔題.6、D【解析】
在上的投影(正射影的數(shù)量)為可知,可求出,求的最小值即可得出結(jié)果.【詳解】因?yàn)樵谏系耐队埃ㄕ溆暗臄?shù)量)為,所以,即,而,所以,因?yàn)樗裕?,故選D.【點(diǎn)睛】本題主要考查了向量在向量上的正射影,向量的數(shù)量積,屬于難題.7、D【解析】
折疊過(guò)程中,仍有,根據(jù)平面平面可證得平面,從而得到正確的選項(xiàng).【詳解】在直角梯形中,因?yàn)闉榈妊苯侨切?,故,所以,故,折起后仍然滿足.因?yàn)槠矫嫫矫?,平面,平面平面,所以平面,因平面,所?又因?yàn)椋?,所以平面,因平面,所以平面平?【點(diǎn)睛】面面垂直的判定可由線面垂直得到,而線面垂直可通過(guò)線線垂直得到,注意面中兩條直線是相交的.由面面垂直也可得到線面垂直,注意線在面內(nèi)且線垂直于兩個(gè)平面的交線.8、A【解析】由x,3x+3,6x+6成等比數(shù)列得選A.考點(diǎn):該題主要考查等比數(shù)列的概念和通項(xiàng)公式,考查計(jì)算能力.9、C【解析】由①得函數(shù)的最小正周期是,排除.對(duì)于B:,當(dāng)時(shí),,此時(shí)B選項(xiàng)對(duì)應(yīng)函數(shù)是減函數(shù),C選項(xiàng)對(duì)應(yīng)函數(shù)是增函數(shù),滿足②,故選C.10、B【解析】
先由數(shù)量積為,得出,求出的坐標(biāo),利用模長(zhǎng)的坐標(biāo)公式求解即可.【詳解】由題意可得,則則故選:B【點(diǎn)睛】本題主要考查了向量模的坐標(biāo)表示以及向量垂直的坐標(biāo)表示,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、4【解析】
由題,根據(jù)垂徑定理求得圓心到直線的距離,可得m的值,既而求得CD的長(zhǎng)可得答案.【詳解】因?yàn)?,且圓的半徑為,所以圓心到直線的距離為,則由,解得,代入直線的方程,得,所以直線的傾斜角為,由平面幾何知識(shí)知在梯形中,.故答案為4【點(diǎn)睛】解決直線與圓的綜合問(wèn)題時(shí),一方面,要注意運(yùn)用解析幾何的基本思想方法(即幾何問(wèn)題代數(shù)化),把它轉(zhuǎn)化為代數(shù)問(wèn)題;另一方面,由于直線與圓和平面幾何聯(lián)系得非常緊密,因此,準(zhǔn)確地作出圖形,并充分挖掘幾何圖形中所隱含的條件,利用幾何知識(shí)使問(wèn)題較為簡(jiǎn)捷地得到解決.12、【解析】
根據(jù)題意,以及等差數(shù)列的性質(zhì),先得到,再由等差數(shù)列的求和公式,即可求出結(jié)果.【詳解】因?yàn)槭堑炔顢?shù)列,,所以,即,記前項(xiàng)和為,則.故答案為:【點(diǎn)睛】本題主要考查等差數(shù)列前項(xiàng)和的基本量的運(yùn)算,熟記等差數(shù)列的性質(zhì)以及求和公式即可,屬于基礎(chǔ)題型.13、2【解析】
根據(jù)條件,利用余弦定理可建立關(guān)于c的方程,即可解出c.【詳解】由余弦定理得,即,解得或(舍去).故填2.【點(diǎn)睛】本題主要考查了利用余弦定理求三角形的邊,屬于中檔題.14、2【解析】
根據(jù)向量的數(shù)量積的運(yùn)算公式,列出方程,即可求解.【詳解】由題意,向量,因?yàn)橄蛄颗c垂直,所以,解得.故答案為:2.【點(diǎn)睛】本題主要考查了向量的坐標(biāo)運(yùn)算,以及向量的垂直關(guān)系的應(yīng)用,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.15、【解析】
依題意,,利用輔助角公式得,利用正弦函數(shù)的單調(diào)性即可求得的取值范圍,在利用換元法以及同角三角函數(shù)基本關(guān)系式把所求問(wèn)題轉(zhuǎn)化結(jié)合基本不等式即可求解.【詳解】∵為的最小內(nèi)角,故,又,因?yàn)?,故,∴取值范圍是.令,則且∴,令,由雙勾函數(shù)可知在上為增函數(shù),故,故.故答案為:.【點(diǎn)睛】本題考查同角的三角函數(shù)的基本關(guān)系、輔助角公式以及正弦型函數(shù)的值域,注意根據(jù)代數(shù)式的結(jié)構(gòu)特點(diǎn)換元后將三角函數(shù)的問(wèn)題轉(zhuǎn)化為雙勾函數(shù)的問(wèn)題,本題屬于中檔題.16、【解析】
首先從方程看是不能直接解出這個(gè)方程的根的,因此可以轉(zhuǎn)化成函數(shù),從函數(shù)的奇偶性出發(fā)。【詳解】設(shè),則∴為偶函數(shù),其圖象關(guān)于軸對(duì)稱,又依題意只有一個(gè)零點(diǎn),故此零點(diǎn)只能是,所以,∴,∴,∴,∴,故答案為:【點(diǎn)睛】本題主要考查了函數(shù)奇偶性以及零點(diǎn)與方程的關(guān)系,方程的根就是對(duì)應(yīng)函數(shù)的零點(diǎn),本題屬于基礎(chǔ)題。三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1),;(2)【解析】
(1)根據(jù)最高頂點(diǎn)間的距離求出周期得,根據(jù)對(duì)稱軸求出;(2)根據(jù)題意求出,結(jié)合誘導(dǎo)公式及和差公式求解.【詳解】解:(1)因的圖象上相鄰兩個(gè)最高點(diǎn)的距離為,∴的最小正周期,從而.又因的圖象關(guān)于直線對(duì)稱,∴.∵,∴,此時(shí).(2)由(1)得,∴,由得,∴,∴.【點(diǎn)睛】此題考查根據(jù)三角函數(shù)圖像性質(zhì)求參數(shù)的值,結(jié)合誘導(dǎo)公式和差公式處理三角求值的問(wèn)題.18、(1)見(jiàn)解析.(2)見(jiàn)解析.【解析】
(1)先取的中點(diǎn),連接,根據(jù)線面平行的判定定理,即可證明結(jié)論成立;(2)根據(jù)線面垂直的判定定理先證明平面,再由線面垂直的性質(zhì),即可得到.【詳解】(1)取的中點(diǎn),連接,可得,且.平面,平面,.又,,且,∴四邊形是平行四邊形,.又平面,平面,平面.(2)在中,,為的中點(diǎn),.是正三角形,為的中點(diǎn),,.平面,∴四邊形是矩形,,又,平面.又平面,.,平面.又平面,.【點(diǎn)睛】本題主要考查線面平行以及線面垂直,熟記線面平行與垂線的判定定理以及性質(zhì)定理即可,屬于??碱}型.19、11【解析】
根據(jù)題設(shè)條件,結(jié)合三角數(shù)的基本關(guān)系式,分別求得,和,再利用兩角和的正切的公式,進(jìn)行化簡(jiǎn)、運(yùn)算,即可求解.【詳解】由,由,可得又由,所以,由,得,可得,所以,即.【點(diǎn)睛】本題主要考查了兩角和與差的正切函數(shù)的化簡(jiǎn)、求值問(wèn)題,其中解答中熟記兩角和與差的正切公式,準(zhǔn)確運(yùn)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,試題有一定的難度,屬于中檔試題.20、【解析】
連接,由題意,得米,米,,在△中,由余弦定理可得
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- Unit 1 How can I get there?Part C(教學(xué)設(shè)計(jì))-2024-2025學(xué)年人教PEP版英語(yǔ)六年級(jí)上冊(cè)
- Unit 1 Hello!(教學(xué)設(shè)計(jì))-2024-2025學(xué)年join in外研劍橋英語(yǔ)三年級(jí)上冊(cè)
- 績(jī)效面談效果評(píng)估管理制度
- 輕松應(yīng)對(duì)小學(xué)語(yǔ)文的試題及答案
- Unit 6 My Home Let's Spell(教學(xué)設(shè)計(jì))-2023-2024學(xué)年人教新起點(diǎn)版英語(yǔ)三年級(jí)下冊(cè)
- 程序設(shè)計(jì)中的調(diào)試方法與技巧試題及答案
- 貝葉斯統(tǒng)計(jì)的應(yīng)用與理論試題及答案
- 2025至2030年中國(guó)波浪烤盤(pán)數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 評(píng)估師的跨文化交流能力試題及答案
- 2025至2030年中國(guó)定子端板數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 醫(yī)院倫理審查批件
- 奶制品風(fēng)味物質(zhì)合成與改良技術(shù)
- 2024年6月四川省高中學(xué)業(yè)水平考試生物試卷真題(含答案詳解)
- 2023-2024學(xué)年遼寧省沈陽(yáng)市南昌中學(xué)八年級(jí)(下)月考英語(yǔ)試卷(4月份)
- 國(guó)服中山裝的設(shè)計(jì)特點(diǎn)及含義
- TB10001-2016 鐵路路基設(shè)計(jì)規(guī)范
- 19S406建筑排水管道安裝-塑料管道
- KA-T 20.1-2024 非煤礦山建設(shè)項(xiàng)目安全設(shè)施設(shè)計(jì)編寫(xiě)提綱 第1部分:金屬非金屬地下礦山建設(shè)項(xiàng)目安全設(shè)施設(shè)計(jì)編寫(xiě)提綱
- 綠色生活實(shí)踐
- (2024年)硫化氫安全培訓(xùn)課件
- 《聚焦超聲治療》課件
評(píng)論
0/150
提交評(píng)論