版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆貴州省銅仁市思南縣思南中學(xué)高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測(cè)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.設(shè)定義域?yàn)榈钠婧瘮?shù)是增函數(shù),若對(duì)恒成立,則實(shí)數(shù)的取值范圍是()A. B. C. D.2.如圖,在中,,是邊上的高,平面,則圖中直角三角形的個(gè)數(shù)是()A. B. C. D.3.是()A.最小正周期為的偶函數(shù) B.最小正周期為的奇函數(shù)C.最小正周期為的偶函數(shù) D.最小正周期為的奇函數(shù)4.過點(diǎn)且與直線垂直的直線方程為()A. B.C. D.5.設(shè)等比數(shù)列的前項(xiàng)和為,若則()A. B. C. D.6.若集合,則集合()A. B. C. D.7.設(shè)是等比數(shù)列,則“”是“數(shù)列是遞增數(shù)列”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件8.在等差數(shù)列中,已知,則數(shù)列的前9項(xiàng)之和等于()A.9 B.18 C.36 D.529.為了解某地區(qū)的中小學(xué)生視力情況,擬從該地區(qū)的中小學(xué)生中抽取部分學(xué)生進(jìn)行調(diào)查,事先已了解到該地區(qū)小學(xué)、初中、高中三個(gè)學(xué)段學(xué)生的視力情況有較大差異,而男女生視力情況差異不大,在下面的抽樣方法中,最合理的抽樣方法是()A.簡(jiǎn)單隨機(jī)抽樣 B.按性別分層抽樣C.按學(xué)段分層抽樣 D.系統(tǒng)抽樣10.?dāng)?shù)列中,若,,則()A.29 B.2563 C.2569 D.2557二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,圓錐型容器內(nèi)盛有水,水深,水面直徑放入一個(gè)鐵球后,水恰好把鐵球淹沒,則該鐵球的體積為________12.已知,則的最小值為__________.13.在區(qū)間上,與角終邊相同的角為__________.14.當(dāng)函數(shù)取得最大值時(shí),=__________.15.計(jì)算:=_______________.16.已知數(shù)列中,,,設(shè),若對(duì)任意的正整數(shù),當(dāng)時(shí),不等式恒成立,則實(shí)數(shù)的取值范圍是______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).求:(1)函數(shù)的最大值、最小值及最小正周期;(2)函數(shù)的單調(diào)遞增區(qū)間.18.高一某班以小組為單位在周末進(jìn)行了一次社會(huì)實(shí)踐活動(dòng),且每小組有5名同學(xué),活動(dòng)結(jié)束后,對(duì)所有參加活動(dòng)的同學(xué)進(jìn)行測(cè)評(píng),其中A,B兩個(gè)小組所得分?jǐn)?shù)如下表:A組8677809488B組9183?7593其中B組一同學(xué)的分?jǐn)?shù)已被污損,看不清楚了,但知道B組學(xué)生的平均分比A組學(xué)生的平均分高出1分.(1)若從B組學(xué)生中隨機(jī)挑選1人,求其得分超過85分的概率;(2)從A組這5名學(xué)生中隨機(jī)抽取2名同學(xué),設(shè)其分?jǐn)?shù)分別為m,n,求的概率.19.設(shè)函數(shù).(1)求函數(shù)的最小正周期.(2)求函數(shù)的單調(diào)遞減區(qū)間;(3)設(shè)為的三個(gè)內(nèi)角,若,,且為銳角,求.20.已知數(shù)列滿足=(1)若求數(shù)列的通項(xiàng)公式;(2)若==對(duì)一切恒成立求實(shí)數(shù)取值范圍.21.已知.(1)求函數(shù)的最小正周期;(2)求函數(shù)在閉區(qū)間上的最小值并求當(dāng)取最小值時(shí),的取值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】
由題意可得,即為,可得恒成立,討論是否為0,結(jié)合換元法和基本不等式,可得所求范圍.【詳解】解:由題意可得,即為,可得恒成立,當(dāng)時(shí),上式顯然成立;當(dāng)時(shí),可得,設(shè),,可得,由,可得,可得,即,故選:A.【點(diǎn)睛】本題主要考查函數(shù)的奇偶性和單調(diào)性的運(yùn)用,考查不等式恒成立問題解法,注意運(yùn)用參數(shù)分離和換元法,考查化簡(jiǎn)運(yùn)算能力,屬于中檔題.2、C【解析】
根據(jù)線面垂直得出一些相交直線垂直,以及找出題中一些已知的相交直線垂直,由這些條件找出圖中的直角三角形.【詳解】①平面,,都是直角三角形;②是直角三角形;③是直角三角形;④由得平面,可知:也是直角三角形.綜上可知:直角三角形的個(gè)數(shù)是個(gè),故選C.【點(diǎn)睛】本題考查直角三角形個(gè)數(shù)的確定,考查相交直線垂直,解題時(shí)可以充分利用直線與平面垂直的性質(zhì)得到,考查推理能力,屬于中等題.3、A【解析】
將函數(shù)化為的形式后再進(jìn)行判斷便可得到結(jié)論.【詳解】由題意得,∵,且函數(shù)的最小正周期為,∴函數(shù)時(shí)最小正周期為的偶函數(shù).故選A.【點(diǎn)睛】判斷函數(shù)最小正周期時(shí),需要把函數(shù)的解析式化為或的形式,然后利用公式求解即可得到周期.4、A【解析】
先根據(jù)求出與之垂直直線的斜率,再利用點(diǎn)斜式求得直線方程?!驹斀狻坑煽傻弥本€斜率,根據(jù)兩直線垂直的關(guān)系,求得,再利用點(diǎn)斜式,可求得直線方程為,化簡(jiǎn)得,選A【點(diǎn)睛】當(dāng)直線斜率存在時(shí),直線垂直的斜率關(guān)系為5、B【解析】
根據(jù)等比數(shù)列中前項(xiàng)和的“片段和”的性質(zhì)求解.【詳解】由題意得,在等比數(shù)列中,成等比數(shù)列,即成等比數(shù)列,∴,解得.故選B.【點(diǎn)睛】設(shè)等比數(shù)列的前項(xiàng)和為,則仍成等比數(shù)列,即每個(gè)項(xiàng)的和仍成等比數(shù)列,應(yīng)用時(shí)要注意使用的條件是數(shù)列的公比.利用此結(jié)論解題可簡(jiǎn)化運(yùn)算,提高解題的效率.6、D【解析】試題分析:作數(shù)軸觀察易得.考點(diǎn):集合的基本運(yùn)算.7、B【解析】
由,可得,解得或,根據(jù)等比數(shù)列的單調(diào)性的判定方法,結(jié)合充分、必要條件的判定方法,即可求解,得到答案.【詳解】設(shè)等比數(shù)列的公比為,則,可得,解得或,此時(shí)數(shù)列不一定是遞增數(shù)列;若數(shù)列為遞增數(shù)列,可得或,所以“”是“數(shù)列為遞增數(shù)列”的必要不充分條件.故選:B.【點(diǎn)睛】本題主要考查了等比數(shù)列的通項(xiàng)公式與單調(diào)性,以及充分條件、必要條件的判定,其中解答中熟記等比數(shù)列的單調(diào)性的判定方法是解答本題的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.8、B【解析】
利用等差數(shù)列的下標(biāo)性質(zhì),可得出,再由等差數(shù)列的前項(xiàng)和公式求出的值.【詳解】在等差數(shù)列中,故選:B【點(diǎn)睛】本題考查了等差數(shù)列的下標(biāo)性質(zhì)、以及等差數(shù)列的前項(xiàng)和公式,考查了數(shù)學(xué)運(yùn)算能力.9、C【解析】試題分析:符合分層抽樣法的定義,故選C.考點(diǎn):分層抽樣.10、D【解析】
利用遞推關(guān)系,構(gòu)造等比數(shù)列,進(jìn)而求得的表達(dá)式,即可求出,也就可以得到的值?!驹斀狻繑?shù)列中,若,,可得,所以是等比數(shù)列,公比為2,首項(xiàng)為5,所以,.【點(diǎn)睛】本題主要考查數(shù)列的通項(xiàng)公式的求法——構(gòu)造法。利用遞推關(guān)系,選擇合適的求解方法是解決問題的關(guān)鍵,常見的數(shù)列的通項(xiàng)公式的求法有:公式法,累加法,累乘法,構(gòu)造法,取倒數(shù)法等。二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
通過將圖形轉(zhuǎn)化為平面圖形,然后利用放球前后體積等量關(guān)系求得球的體積.【詳解】作出相關(guān)圖形,顯然,因此,因此放球前,球O與邊相切于點(diǎn)M,故,則,所以,,所以放球后,而,而,解得.【點(diǎn)睛】本題主要考查圓錐體積與球體積的相關(guān)計(jì)算,建立體積等量關(guān)系是解決本題的關(guān)鍵,意在考查學(xué)生的劃歸能力,計(jì)算能力和分析能力.12、【解析】
根據(jù)均值不等式即可求出的最小值.【詳解】因?yàn)樗裕鶕?jù)均值不等式可得:當(dāng)且僅當(dāng),即時(shí)等號(hào)成立.【點(diǎn)睛】本題主要考查了均值不等式,屬于中檔題.13、【解析】
根據(jù)與終邊相同的角可以表示為這一方法,即可得出結(jié)論.【詳解】因?yàn)?,所以與角終邊相同的角為.【點(diǎn)睛】本題考查終邊相同的角的表示方法,考查對(duì)基本概念以及基本知識(shí)的熟練程度,考查了數(shù)學(xué)運(yùn)算能力,是簡(jiǎn)單題.14、【解析】
利用輔助角將函數(shù)利用兩角差的正弦公式進(jìn)行化簡(jiǎn),求得函數(shù)取得最大值時(shí)的與的關(guān)系,從而求得,,可得結(jié)果.【詳解】因?yàn)楹瘮?shù),其中,,當(dāng)時(shí),函數(shù)取得最大值,此時(shí),∴,,∴故答案為【點(diǎn)睛】本題考查了兩角差的正弦公式的逆用,著重考查輔助角公式的應(yīng)用與正弦函數(shù)的性質(zhì),屬于中檔題.15、【解析】試題分析:考點(diǎn):兩角和的正切公式點(diǎn)評(píng):本題主要考查兩角和的正切公式變形的運(yùn)用,抓住和角是特殊角,是解題的關(guān)鍵.16、【解析】∵,(,),當(dāng)時(shí),,,…,,并項(xiàng)相加,得:,
∴,又∵當(dāng)時(shí),也滿足上式,
∴數(shù)列的通項(xiàng)公式為,∴
,令(),則,∵當(dāng)時(shí),恒成立,∴在上是增函數(shù),
故當(dāng)時(shí),,即當(dāng)時(shí),,對(duì)任意的正整數(shù),當(dāng)時(shí),不等式恒成立,則須使,即對(duì)恒成立,即的最小值,可得,∴實(shí)數(shù)的取值范圍為,故答案為.點(diǎn)睛:本題考查數(shù)列的通項(xiàng)及前項(xiàng)和,涉及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查運(yùn)算求解能力,注意解題方法的積累,屬于難題通過并項(xiàng)相加可知當(dāng)時(shí),進(jìn)而可得數(shù)列的通項(xiàng)公式,裂項(xiàng)、并項(xiàng)相加可知,通過求導(dǎo)可知是增函數(shù),進(jìn)而問題轉(zhuǎn)化為,由恒成立思想,即可得結(jié)論.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)最大值,最小值為,最小正周期;(2)【解析】
(1)根據(jù)即可求出最值,利用即可求出最小正周期;(2)根據(jù)復(fù)合函數(shù)的單調(diào)性,令即可得解.【詳解】(1),函數(shù)的最大值為,最小值為;函數(shù)的最小正周期為.(2)令,得:,故函數(shù)的增區(qū)間為.【點(diǎn)睛】本題考查了三角函數(shù)的性質(zhì)以及單調(diào)區(qū)間的求解,屬于基礎(chǔ)題.18、(1)(2)【解析】
(1)先設(shè)在B組中看不清的那個(gè)同學(xué)的分?jǐn)?shù)為x,分別求得兩組的平均數(shù),再由平均數(shù)間的關(guān)系求解.(2)先求出從A組這5名學(xué)生中隨機(jī)抽取2名同學(xué)所有方法數(shù),再用列舉的方法得到滿足求的方法數(shù),再由古典概型求解.【詳解】(1)設(shè)在B組中看不清的那個(gè)同學(xué)的分?jǐn)?shù)為x由題意得解得x=88所以在B組5個(gè)分?jǐn)?shù)超過85的有3個(gè)所以得分超過85分的概率是(2)從A組這5名學(xué)生中隨機(jī)抽取2名同學(xué),設(shè)其分?jǐn)?shù)分別為m,n,則所有共有共10個(gè)其中滿足求的有:共6個(gè)故|的概率為
【點(diǎn)睛】本題主要考查了平均數(shù)和古典概型概率的求法,還考查了運(yùn)算求解的能力,屬于中檔題.19、(1)(2)減區(qū)間為,(3)【解析】
利用三角恒等變換化簡(jiǎn)函數(shù)的解析式,再利用正弦函數(shù)的周期性,得出結(jié)論.利用正弦函數(shù)的單調(diào)性,求得函數(shù)的單調(diào)遞減區(qū)間.利用同角三角函數(shù)的基本關(guān)系、兩角和的正弦公式,求得的值.【詳解】函數(shù),故它的最小正周期為.對(duì)于函數(shù),令,求得,可得它的減區(qū)間為,.中,若,.若,,為銳角,..【點(diǎn)睛】本題主要考查三角恒等變換,正弦函數(shù)的周期性和單調(diào)性,考查了同角三角函數(shù)的基本關(guān)系、兩角和的正弦公式的應(yīng)用,屬于中檔題.20、(1)=;(2).【解析】
(1)由,結(jié)合可得數(shù)列為等差數(shù)列,進(jìn)而可得所求;(2)由得,利用累加法并結(jié)合等比數(shù)列的前項(xiàng)和公式求出,化簡(jiǎn)得,再利用數(shù)列的單調(diào)性求出的最大值即可得出結(jié)論.【詳解】(1)由,可得=.∴數(shù)列是首項(xiàng)為1,公差為4的等差數(shù)列,∴.(2)由及,得=,∴,∴,又滿足上式,∴.∵對(duì)一切恒成立,即對(duì)一切恒成立,∴對(duì)一切恒成立.又?jǐn)?shù)列為單調(diào)遞減數(shù)列,∴,∴,∴實(shí)數(shù)取值
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025關(guān)于租房合同簽訂的詳細(xì)解釋
- 2025年度打印機(jī)租賃合同(含環(huán)保耗材供應(yīng))3篇
- 2025年度二零二五煤炭產(chǎn)業(yè)鏈供應(yīng)鏈合作協(xié)議4篇
- 2025年度門面租賃合同租賃物保險(xiǎn)與理賠協(xié)議4篇
- 2025設(shè)計(jì)企業(yè)形象委托合同
- 幾類結(jié)構(gòu)矩陣擴(kuò)展垂直線性互補(bǔ)問題的誤差界估計(jì)
- 基于IPA分析的三亞西島民宿顧客滿意度研究
- 2025版工業(yè)園區(qū)工業(yè)廢水處理技術(shù)合作框架協(xié)議3篇
- 2025版臨時(shí)聘用鍋爐工工作人員薪資及福利保障合同4篇
- 二零二四年度學(xué)校餐廳員工勞動(dòng)合同及食品安全與營養(yǎng)教育協(xié)議3篇
- 2024版?zhèn)€人私有房屋購買合同
- 2024爆炸物運(yùn)輸安全保障協(xié)議版B版
- 《食品與食品》課件
- 讀書分享會(huì)《白夜行》
- 光伏工程施工組織設(shè)計(jì)
- DB4101-T 121-2024 類家庭社會(huì)工作服務(wù)規(guī)范
- 化學(xué)纖維的鑒別與測(cè)試方法考核試卷
- 2024-2025學(xué)年全國中學(xué)生天文知識(shí)競(jìng)賽考試題庫(含答案)
- 臨床微生物檢查課件 第2章細(xì)菌的生理
- 作品著作權(quán)獨(dú)家授權(quán)協(xié)議(部分授權(quán))
- 取水泵站施工組織設(shè)計(jì)
評(píng)論
0/150
提交評(píng)論