版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆山西省臨汾市翼城校高一下數(shù)學(xué)期末達(dá)標(biāo)檢測(cè)試題注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.己知,,若軸上方的點(diǎn)滿足對(duì)任意,恒有成立,則點(diǎn)縱坐標(biāo)的最小值為()A. B. C.1 D.22.要得到函數(shù)的圖象,只需將函數(shù)的圖象A.向左平移個(gè)單位長(zhǎng)度B.向右平移個(gè)單位長(zhǎng)度C.向左平移個(gè)單位長(zhǎng)度D.向右平移個(gè)單位長(zhǎng)度3.設(shè)集合,,,則()A. B. C. D.4.已知三棱柱的底面為直角三角形,側(cè)棱長(zhǎng)為2,體積為1,若此三棱柱的頂點(diǎn)均在同一球面上,則該球半徑的最小值為()A.1 B.2 C. D.5.已知函數(shù),且不等式的解集為,則函數(shù)的圖象為()A. B.C. D.6.已知向量,,若,則()A. B. C. D.7.在中,若則等于()A. B. C. D.8.已知,則()A. B. C. D.9.如圖,位于處的海面觀測(cè)站獲悉,在其正東方向相距40海里的處有一艘漁船遇險(xiǎn),并在原地等待營(yíng)救.在處南偏西且相距20海里的處有一救援船,其速度為海里小時(shí),則該船到求助處的時(shí)間為()分鐘.A.24 B.36 C.48 D.6010.2019年是新中國(guó)成立70周年,渦陽(yáng)縣某中學(xué)為慶祝新中國(guó)成立70周年,舉辦了“我和我的祖國(guó)”演講比賽,某選手的6個(gè)得分去掉一個(gè)最高分,去掉一個(gè)最低分,4個(gè)剩余分?jǐn)?shù)的平均分為91.現(xiàn)場(chǎng)制作的6個(gè)分?jǐn)?shù)的莖葉圖后來(lái)有1個(gè)數(shù)據(jù)模糊,無(wú)法辨認(rèn),在圖中以表示,則4個(gè)剩余分?jǐn)?shù)的方差為()A.1 B. C.4 D.6二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的定義域?yàn)锳,若時(shí)總有為單函數(shù).例如,函數(shù)=2x+1()是單函數(shù).下列命題:①函數(shù)=(xR)是單函數(shù);②若為單函數(shù),且則;③若f:AB為單函數(shù),則對(duì)于任意bB,它至多有一個(gè)原象;④函數(shù)f(x)在某區(qū)間上具有單調(diào)性,則f(x)一定是單函數(shù).其中的真命題是.(寫(xiě)出所有真命題的編號(hào))12.已知a,b為常數(shù),若,則______;13.過(guò)點(diǎn)作圓的兩條切線,切點(diǎn)分別為,則=.14.在△ABC中,已知30,則B等于__________.15.已知圓:,若對(duì)于圓:上任意一點(diǎn),在圓上總存在點(diǎn)使得,則實(shí)數(shù)的取值范圍為_(kāi)_________.16.已知一組數(shù)據(jù),,,的方差為,則這組數(shù)據(jù),,,的方差為_(kāi)_____.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.如圖,飛機(jī)的航線和山頂在同一個(gè)鉛垂平面內(nèi),已知飛機(jī)的高度為海拔,速度為,飛行員在處先看到山頂?shù)母┙菫?8°30′,經(jīng)過(guò)后又在處看到山頂?shù)母┙菫?1°(1)求飛機(jī)在處與山頂?shù)木嚯x(精確到);(2)求山頂?shù)暮0胃叨龋ň_到)參考數(shù)據(jù):,18.在直角坐標(biāo)系中,,,點(diǎn)在直線上.(1)若三點(diǎn)共線,求點(diǎn)的坐標(biāo);(2)若,求點(diǎn)的坐標(biāo).19.在中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知,,.(1)求邊c的值;(2)求的面積20.如圖,在四棱錐中,,底面為平行四邊形,平面.()求證:平面;()若,,,求三棱錐的體積;()設(shè)平面平面直線,試判斷與的位置關(guān)系,并證明.21.如圖,三角形中,,是邊長(zhǎng)為l的正方形,平面底面,若分別是的中點(diǎn).(1)求證:底面;(2)求幾何體的體積.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】
由題意首先利用平面向量的坐標(biāo)運(yùn)算法則確定縱坐標(biāo)的解析式,然后結(jié)合二次函數(shù)的性質(zhì)確定點(diǎn)P縱坐標(biāo)的最小值即可.【詳解】設(shè),則,,故,恒成立,即恒成立,據(jù)此可得:,故,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.據(jù)此可得的最小值為,則的最小值為.即點(diǎn)縱坐標(biāo)的最小值為2.故選D.【點(diǎn)睛】本題主要考查平面向量的坐標(biāo)運(yùn)算,二次函數(shù)最值的求解等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.2、D【解析】
先將化為,根據(jù)函數(shù)圖像的平移原則,即可得出結(jié)果.【詳解】因?yàn)?,所以只需將的圖象向右平移個(gè)單位.【點(diǎn)睛】本題主要考查三角函數(shù)的平移,熟記函數(shù)平移原則即可,屬于基礎(chǔ)題型.3、A【解析】因?yàn)?,所以,又因?yàn)?,,故選A.4、D【解析】
先證明棱柱為直棱柱,再求出棱柱外接球的半徑,利用基本不等式求出其最小值.【詳解】∵三棱柱內(nèi)接于球,∴棱柱各側(cè)面均為平行四邊形且內(nèi)接于圓,所以棱柱的側(cè)棱都垂直底面,所以該三棱柱為直三棱柱.設(shè)底面三角形的兩條直角邊長(zhǎng)為,,∵三棱柱的高為2,體積是1,∴,即,將直三棱柱補(bǔ)成一個(gè)長(zhǎng)方體,則直三棱柱與長(zhǎng)方體有同一個(gè)外接球,所以球的半徑為.故選D【點(diǎn)睛】本題主要考查幾何體外接球的半徑的計(jì)算和基本不等式求最值,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于基礎(chǔ)題.5、B【解析】本題考查二次函數(shù)圖像,二次方程的根,二次不等式的解集三者之間的關(guān)系.不等式的解集為,所以方程的兩根是則解得所以則故選B6、B【解析】
∵,∴.∴,即,∴,,故選B.【考點(diǎn)定位】向量的坐標(biāo)運(yùn)算7、D【解析】
由正弦定理,求得,再由,且,即可求解,得到答案.【詳解】由題意,在中,由正弦定理可得,即,又由,且,所以或,故選D.【點(diǎn)睛】本題主要考查了正弦定理的應(yīng)用,其中解答中熟記三角形的正弦定理,準(zhǔn)確運(yùn)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.8、C【解析】
根據(jù)特殊值排除A,B選項(xiàng),根據(jù)單調(diào)性選出C,D選項(xiàng)中的正確選項(xiàng).【詳解】當(dāng)時(shí),,故A,B兩個(gè)選項(xiàng)錯(cuò)誤.由于,故,所以C選項(xiàng)正確,D選項(xiàng)錯(cuò)誤.故本小題選C.【點(diǎn)睛】本小題主要考查三角函數(shù)值,考查對(duì)數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性,屬于基礎(chǔ)題.9、A【解析】
利用余弦定理求出的長(zhǎng)度,然后根據(jù)速度、時(shí)間、路程之間的關(guān)系求出時(shí)間即可.【詳解】由題意可知:,運(yùn)用余弦定理可知:該船到求助處的時(shí)間,故本題選A.【點(diǎn)睛】本題考查了余弦定理的應(yīng)用,考查了數(shù)學(xué)運(yùn)算能力.10、B【解析】
由題意得x≥3,由此能求出4個(gè)剩余數(shù)據(jù)的方差.【詳解】由題意得x≥3,則4個(gè)剩余分?jǐn)?shù)的方差為:s2[(93﹣91)2+(90﹣91)2+(90﹣91)2+(91﹣91)2].故選B.【點(diǎn)睛】本題考查了方差的計(jì)算問(wèn)題,也考查了莖葉圖的性質(zhì)、平均數(shù)、方差等基礎(chǔ)知識(shí),是基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、②③【解析】
命題①:對(duì)于函數(shù),設(shè),故和可能相等,也可能互為相反數(shù),即命題①錯(cuò)誤;命題②:假設(shè),因?yàn)楹癁閱魏瘮?shù),所以,與已知矛盾,故,即命題②正確;命題③:若為單函數(shù),則對(duì)于任意,,假設(shè)不只有一個(gè)原象與其對(duì)應(yīng),設(shè)為,則,根據(jù)單函數(shù)定義,,又因?yàn)樵笾性夭恢貜?fù),故函數(shù)至多有一個(gè)原象,即命題③正確;命題④:函數(shù)在某區(qū)間上具有單調(diào)性,并不意味著在整個(gè)定義域上具有單調(diào)性,即命題④錯(cuò)誤,綜上可知,真命題為②③.故答案為②③.12、2【解析】
根據(jù)極限存在首先判斷出的值,然后根據(jù)極限的值計(jì)算出的值,由此可計(jì)算出的值.【詳解】因?yàn)椋?,又因?yàn)?,所以,所?故答案為:.【點(diǎn)睛】本題考查根據(jù)極限的值求解參數(shù),難度較易.13、【解析】
如圖,連接,在直角三角形中,所以,,,故.考點(diǎn):1.直線與圓的位置關(guān)系;2.平面向量的數(shù)量積.14、【解析】
根據(jù)三角形正弦定理得到角,再由三角形內(nèi)角和關(guān)系得到結(jié)果.【詳解】根據(jù)三角形的正弦定理得到,故得到角,當(dāng)角時(shí),有三角形內(nèi)角和為,得到,當(dāng)角時(shí),角故答案為【點(diǎn)睛】在解與三角形有關(guān)的問(wèn)題時(shí),正弦定理、余弦定理是兩個(gè)主要依據(jù).解三角形時(shí),有時(shí)可用正弦定理,有時(shí)也可用余弦定理,應(yīng)注意用哪一個(gè)定理更方便、簡(jiǎn)捷一般來(lái)說(shuō),當(dāng)條件中同時(shí)出現(xiàn)及、時(shí),往往用余弦定理,而題設(shè)中如果邊和正弦、余弦函數(shù)交叉出現(xiàn)時(shí),往往運(yùn)用正弦定理將邊化為正弦函數(shù)再結(jié)合和、差、倍角的正余弦公式進(jìn)行解答.15、【解析】
由,知為圓的切線,所以兩圓外離,即圓心距大于兩半徑之和,代入方程即可?!驹斀狻坑?,知為圓的切線,即在圓上任意一點(diǎn)都可以向圓作切線,當(dāng)兩圓外離時(shí),滿足條件,所以,,即,化簡(jiǎn),得:,解得:或.【點(diǎn)睛】和圓半徑所成夾角為,即是圓的切線,兩圓外離表示圓心距大于兩半徑之和。16、【解析】
利用方差的性質(zhì)直接求解.【詳解】一組數(shù)據(jù),,,的方差為5,這組數(shù)據(jù),,,的方差為:.【點(diǎn)睛】本題考查方差的性質(zhì)應(yīng)用。若的方差為,則的方差為。三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)14981m(2)【解析】
(1)先求出飛機(jī)在150秒內(nèi)飛行的距離,然后由正弦定理可得;(2)飛機(jī),山頂?shù)暮0蔚牟顬?,則山頂?shù)暮0胃叨葹椋驹斀狻拷猓海?)飛機(jī)在150秒內(nèi)飛行的距離為,在中,由正弦定理,有,∴;(2)飛機(jī),山頂?shù)暮0蔚牟顬?,,即山頂?shù)暮0胃叨葹椋军c(diǎn)睛】本題主要考查正弦定理的應(yīng)用,考查了計(jì)算能力,屬于中檔題.18、(1);(2).【解析】
(1)三點(diǎn)共線,則有與共線,由向量共線的坐標(biāo)運(yùn)算可得點(diǎn)坐標(biāo);(2),則,由向量數(shù)量積的坐標(biāo)運(yùn)算可得【詳解】設(shè),則,(1)因?yàn)槿c(diǎn)共線,所以與共線,所以,,點(diǎn)的坐標(biāo)為.(2)因?yàn)?,所以,即,,點(diǎn)的坐標(biāo)為.【點(diǎn)睛】本題考查向量共線和向量垂直的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.19、(1)(2)3【解析】
(1)由可得,利用正弦定理可得,即可求解;(2)先利用余弦定理求得,即可求得,再利用三角形面積公式求解即可【詳解】解:(1)因?yàn)?所以,即,則(2)由(1),則,所以,所以【點(diǎn)睛】本題考查利用正弦定理邊角互化,考查利用余弦定理求角,考查三角形面積公式的應(yīng)用20、(1)證明見(jiàn)解析;(2);(3),證明見(jiàn)解析.【解析】
(1)根據(jù)題意得到,,面從而得到線線垂直;(2)由圖形特點(diǎn)得到面,代入數(shù)據(jù)可得到體積值;(3)證明平面,利用平面平面,可得..【詳解】()證明:∵面,面,∴,又∵,面,面,,∴面,()∵底面為平行四邊形,面,∴面,∴.().證明:∵底面為平行四邊形,∴,∵面,面,∴面,又∵面面,面,∴.21、(1)證明見(jiàn)解析;(2).【解析】試題分析:(1)通過(guò)面面平行證明線面平行,所以取的中點(diǎn),的中點(diǎn),連接.只需通過(guò)證明HG//BC,HF//AB來(lái)證明面GHF//面ABC,從而證明底面.(2)原圖形可以看作是以點(diǎn)C為頂點(diǎn),ABDE為底的四棱錐,所四棱錐的體積公式可求得體積.試題解析:(1)取的中點(diǎn),的中點(diǎn),連接.(如圖)∵分別是和的中點(diǎn),∴,且,,且.又∵為正方形,∴,.∴且.∴為平行四邊形.∴,又平面,∴平面.(2)因?yàn)椋?,又平面平面,平面,∴平?∵三
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度農(nóng)村土地置換與農(nóng)村土地綜合整治項(xiàng)目合同2篇
- 2025年度綠色節(jié)能冷庫(kù)產(chǎn)權(quán)交接合同
- 2025年信息技術(shù)咨詢合同樣本:智慧社區(qū)平臺(tái)建設(shè)與運(yùn)營(yíng)合作協(xié)議3篇
- 二零二五年度酒店客房部客房用品采購(gòu)合同3篇
- 2025年度杭州市文化創(chuàng)意產(chǎn)業(yè)項(xiàng)目投資合同6篇
- 二零二五年度企業(yè)代為管理員工社保繳費(fèi)及公積金合同2篇
- 2025年度農(nóng)產(chǎn)品深加工項(xiàng)目委托收購(gòu)合同3篇
- 2025年度建筑材料供貨與建筑垃圾處理合同3篇
- 2025年度農(nóng)業(yè)機(jī)械作業(yè)與農(nóng)業(yè)廢棄物回收處理服務(wù)合同3篇
- 2024年河南省中醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫(kù)頻考點(diǎn)附帶答案
- ESD靜電防護(hù)檢測(cè)及管控標(biāo)準(zhǔn)
- 組織內(nèi)外部環(huán)境要素識(shí)別表
- 韌性理論與韌性城市建設(shè)
- 高中數(shù)學(xué)作業(yè)分層設(shè)計(jì)的有效性分析 論文
- 基于二十四節(jié)氣開(kāi)展幼兒園美育活動(dòng)的實(shí)踐策略 論文
- 四年級(jí)語(yǔ)文閱讀理解《嫦娥奔月(節(jié)選)》練習(xí)(含答案)
- 鼻咽炎-疾病研究白皮書(shū)
- 普速鐵路工務(wù)安全規(guī)則
- 石阡縣人民醫(yī)院內(nèi)科綜合大樓建設(shè)項(xiàng)目環(huán)評(píng)報(bào)告
- 業(yè)主搭建陽(yáng)光房申請(qǐng)書(shū)
- 消費(fèi)主義影響下中國(guó)當(dāng)代陶藝的特點(diǎn)獲獎(jiǎng)科研報(bào)告
評(píng)論
0/150
提交評(píng)論