2023-2024學年山東省德州市陵城一中數(shù)學高一下期末經(jīng)典試題含解析_第1頁
2023-2024學年山東省德州市陵城一中數(shù)學高一下期末經(jīng)典試題含解析_第2頁
2023-2024學年山東省德州市陵城一中數(shù)學高一下期末經(jīng)典試題含解析_第3頁
2023-2024學年山東省德州市陵城一中數(shù)學高一下期末經(jīng)典試題含解析_第4頁
2023-2024學年山東省德州市陵城一中數(shù)學高一下期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年山東省德州市陵城一中數(shù)學高一下期末經(jīng)典試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)f(x)=x,g(x)=x2-x+2,若存在x1,x2A.12 B.22 C.23 D.322.已知圓O1:x2+y2=1與圓O2:(x﹣3)2+(x+4)2=16,則圓O1與圓O2的位置關系為()A.外切 B.內切 C.相交 D.相離3.已知等差數(shù)列中,若,則()A.1 B.2 C.3 D.44.已知集合,,則()A. B. C. D.5.已知平面向量,的夾角為,,,則向的值為()A.-2 B. C.4 D.6.已知角是第三象限的角,則角是()A.第一或第二象限的角 B.第二或第三象限的角C.第一或第三象限的角 D.第二或第四象限的角7.在區(qū)間上隨機選取一個數(shù),則滿足的概率為()A. B. C. D.8.已知,若關于x的不等式的解集為,則()A. B. C.1 D.79.如果3個正整數(shù)可作為一個直角三角形三條邊的邊長,則稱這3個數(shù)為一組勾股數(shù),從中任取3個不同的數(shù),則這3個數(shù)構成一組勾股數(shù)的概率為()A. B. C. D.10.在中,角,,的對邊分別為,,,若,,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.中,內角,,所對的邊分別是,,,且,,則的值為__________.12.已知正實數(shù)滿足,則的值為_____________.13.已知等比數(shù)列的前項和為,,則的值是__________.14.若正四棱錐的側棱長為,側面與底面所成的角是45°,則該正四棱錐的體積是________.15.齊王與田忌賽馬,田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬,田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬,田忌的下等馬劣于齊王的下等馬.現(xiàn)從雙方的馬匹中隨機選一匹進行一場比賽,則田忌的馬獲勝的概率為__________.16.如圖,以為直徑的圓中,,在圓上,,于,于,,記,,的面積和為,則的最大值為______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,正方體的棱長為2,E,F(xiàn)分別為,AC的中點.(1)證明:平面;(2)求三棱錐的體積.18.的內角所對的邊分別為,向量,若.(1)求角的大??;(2)若,求的值.19.已知函數(shù)的最小正周期為,且該函數(shù)圖象上的最低點的縱坐標為.(1)求函數(shù)的解析式;(2)求函數(shù)的單調遞增區(qū)間及對稱軸方程.20.一個工廠在某年里連續(xù)10個月每月產品的總成本y(萬元)與該月產量x(萬件)之間有如下一組數(shù)據(jù):x1.081.121.191.281.361.481.591.681.801.87y2.252.372.402.552.642.752.923.033.143.26(1)通過畫散點圖,發(fā)現(xiàn)可用線性回歸模型擬合y與x的關系,請用相關系數(shù)加以說明;(2)①建立月總成本y與月產量x之間的回歸方程;②通過建立的y關于x的回歸方程,估計某月產量為1.98萬件時,此時產品的總成本為多少萬元?(均精確到0.001)附注:①參考數(shù)據(jù):=14.45,=27.31,=0.850,=1.042,=1.1.②參考公式:相關系數(shù):r=.回歸方程=x+中斜率和截距的最小二乘估計公式分別為:=,=-21.記為等差數(shù)列的前項和,已知,.(1)求的通項公式;(2)求,并求的最小值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

由題得g(x構造h(x)=g(x)-f(x)=x2-2x+2∈【詳解】由fx1+f令h(x)=g(x)-f(x)=xhxn=hx1N的最大值為22.故選:B.【點睛】本題考查函數(shù)的最值的求法,注意運用轉化思想,以及二次函數(shù)在閉區(qū)間上的最值求法,考查運算能力,屬于中檔題.2、A【解析】

先求出兩個圓的圓心和半徑,再根據(jù)它們的圓心距等于半徑之和,可得兩圓相外切.【詳解】圓的圓心為,半徑等于1,圓的圓心為,半徑等于4,它們的圓心距等于,等于半徑之和,兩個圓相外切.故選A.【點睛】判斷兩圓的位置關系時常用幾何法,即利用兩圓圓心之間的距離與兩圓半徑之間的關系,一般不采用代數(shù)法.3、A【解析】

根據(jù)已知先求出數(shù)列的首項,公差d已知,可得?!驹斀狻坑深}得,,解得,則.故選:A【點睛】本題考查用數(shù)列的通項公式求某一項,是基礎題。4、A【解析】

先分別求出集合,,由此能求出.【詳解】集合,,1,,或,,,.故選:.【點睛】本題考查交集的求法,考查交集定義等基礎知識,考查運算求解能力,考查函數(shù)與方程思想,是基礎題.5、C【解析】

通過已知條件,利用向量的數(shù)量積化簡求解即可.【詳解】平面向量,的夾角為,或,則向量.故選:【點睛】本題考查向量數(shù)量積公式,屬于基礎題.6、D【解析】

可采取特殊化的思路求解,也可將各象限分成兩等份,再從x軸正半軸起,逆時針依次將各區(qū)域標上一?二?三?四,則標有三的即為所求區(qū)域.【詳解】(方法一)取,則,此時角為第二象限的角;取,則,此時角為第四象限的角.(方法二)如圖,先將各象限分成兩等份,再從x軸正半軸起,逆時針依次將各區(qū)域標上一?二?三?四,則標有三的區(qū)域即為角的終邊所在的區(qū)域,故角為第二或第四象限的角.故選:D【點睛】本題主要考查了根據(jù)所在象限求所在象限的方法,屬于中檔題.7、D【解析】

在區(qū)間上,且滿足所得區(qū)間為,利用區(qū)間的長度比,即可求解.【詳解】由題意,在區(qū)間上,且滿足所得區(qū)間為,由長度比的幾何概型,可得概率為,故選D.【點睛】本題主要考查了長度比的幾何概型的概率的計算,其中解答中認真審題,合理利用長度比求解是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于基礎題.8、B【解析】

由韋達定理列方程求出,即可得解.【詳解】由已知及韋達定理可得,,,即,,所以.故選:.【點睛】本題考查一元二次方程和一元二次不等式的關系、韋達定理的應用等,屬于一般基礎題.9、C【解析】

試題分析:從中任取3個不同的數(shù)共有10種不同的取法,其中的勾股數(shù)只有3,4,5,故3個數(shù)構成一組勾股數(shù)的取法只有1種,故所求概率為,故選C.考點:古典概型10、A【解析】

由正弦定理求得sinA,利用同角三角函數(shù)的基本關系求得cosA,求出sinB=sin(120°+A)的值,可得

的值.【詳解】△ABC中,由正弦定理可得

,∴

,∴sinA=

,cosA=.

sinB=sin(120°+A)=

?+?=

,再由正弦定理可得

=

=

,

故答案為

A.【點睛】本題考查正弦定理,兩角和與差的正弦公式的應用,求出sinB是解題的關鍵,屬基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、4【解析】

利用余弦定理變形可得,從而求得結果.【詳解】由余弦定理得:本題正確結果:【點睛】本題考查余弦定理的應用,關鍵是能夠熟練應用的變形,屬于基礎題.12、【解析】

將已知等式,兩邊同取以為底的對數(shù),求出,利用換底公式,即可求解.【詳解】,,,.故答案為:.【點睛】本題考查指對數(shù)之間的關系,考查對數(shù)的運算以及應用換底公式求值,屬于中檔題.13、1【解析】

根據(jù)等比數(shù)列前項和公式,由可得,通過化簡可得,代入的值即可得結果.【詳解】∵,∴,顯然,∴,∴,∴,∴,故答案為1.【點睛】本題主要考查等比數(shù)列的前項和公式,本題解題的關鍵是看出數(shù)列的公比的值,屬于基礎題.14、【解析】

過棱錐頂點作,平面,則為的中點,為正方形的中心,連結,設正四棱錐的底面長為,根據(jù)已知求出a=2,SO=1,再求該正四棱錐的體積.【詳解】過棱錐頂點作,平面,則為的中點,為正方形的中心,連結,則為側面與底面所成角的平面角,即,設正四棱錐的底面長為,則,所以,在中,∵∴,解得,∴∴棱錐的體積.故答案為【點睛】本題主要考查空間線面角的計算,考查棱錐體積的計算,意在考查學生對這些知識的理解掌握水平,屬于基礎題.15、.【解析】分析:由題意結合古典概型計算公式即可求得題中的概率值.詳解:由題意可知了,比賽可能的方法有種,其中田忌可獲勝的比賽方法有三種:田忌的中等馬對齊王的下等馬,田忌的上等馬對齊王的下等馬,田忌的上等馬對齊王的中等馬,結合古典概型公式可得,田忌的馬獲勝的概率為.點睛:有關古典概型的概率問題,關鍵是正確求出基本事件總數(shù)和所求事件包含的基本事件數(shù).(1)基本事件總數(shù)較少時,用列舉法把所有基本事件一一列出時,要做到不重復、不遺漏,可借助“樹狀圖”列舉.(2)注意區(qū)分排列與組合,以及計數(shù)原理的正確使用.16、【解析】

可設,表示出S關于的函數(shù),從而轉化為三角函數(shù)的最大值問題.【詳解】設,則,,,當時,.【點睛】本題主要考查函數(shù)的實際運用,三角函數(shù)最值問題,意在考查學生的劃歸能力,分析能力和數(shù)學建模能力.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)【解析】

(1)可利用線線平行來證明線面平行(2)可采用等體積法進行求解【詳解】證明:(1)如圖,連結BD;因為四邊形ABCD為正方形,所以BD交AC于F且F為BD中點;又因為E為中點,所以;因為平面,平面,所以平面;(2)三棱錐的體積.【點睛】本題考查了線面平行的證明及錐體體積的求解方法,證線面平行一般是通過證線線平行來證明,三棱錐的體積常用等體積法轉換底面和高進行求解.18、(1);(2)2【解析】

(1)根據(jù)向量的數(shù)量積定義,結合余弦的倍角公式,即可求得;(2)由余弦定理,及(1)中所求角度,即可直接求得.【詳解】(1)由已知易得:所以,又故.(2)由及余弦定理可得:所以,所以得:(舍)所以.【點睛】本題考查余弦定理,余弦的倍角公式,涉及向量的數(shù)量積,屬基礎題.19、(1);(2)增區(qū)間是,對稱軸為【解析】

(1)由周期求得ω,再由函數(shù)圖象上的最低點的縱坐標為﹣3求得A,則函數(shù)解析式可求;(2)直接利用復合函數(shù)的單調性求函數(shù)f(x)的單調遞增區(qū)間,再由2x求解x可得函數(shù)f(x)的對稱軸方程.【詳解】(1)因為的最小正周期為因為,,,∴.又函數(shù)圖象上的最低點縱坐標為,且∴∴.(2)由,可得可得單調遞增區(qū)間.由,得.所以函數(shù)的對稱軸方程為.【點睛】本題考查函數(shù)解析式的求法,考查y=Asin(ωx+φ)型函數(shù)的性質,是基礎題.20、(1)見解析;(2)①;②3.385萬元.【解析】

(1)由已知條件利用公式,求得的值,再與比較大小即可得結果;(2)根據(jù)所給的數(shù)據(jù),做出變量的平均數(shù),根據(jù)樣本中心點一定在線性回歸方程上,求出的值,寫出線性回歸方程;將代入所求線性回歸方程求出對應的的值即可.【詳解】(1)由已知條件得:,這說明與正相關,且相關性很強.(2)①由已知求得,所以所求回歸直線方程為.②當時,(萬元),此時產品的總成本為3.385萬元.【點睛】本題主要考查線性回歸方程的求解與應用,屬于中檔題.求回歸直線方程的步驟:①依據(jù)樣本數(shù)據(jù)確定兩個變量具有線性相關關系;②計算的值;③計算回歸系數(shù);④寫出回歸直線方程為;回歸直線過樣本點中心是一條重要性質,利用線性回歸方程可以估計總體,幫助我們分析兩個變量的變化趨勢.21、(1)an=3n–4,(3)Sn=n3–8n,最

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論