河北省正定縣第七中學(xué)2023-2024學(xué)年高三第二次模擬考試數(shù)學(xué)試卷含解析_第1頁(yè)
河北省正定縣第七中學(xué)2023-2024學(xué)年高三第二次模擬考試數(shù)學(xué)試卷含解析_第2頁(yè)
河北省正定縣第七中學(xué)2023-2024學(xué)年高三第二次模擬考試數(shù)學(xué)試卷含解析_第3頁(yè)
河北省正定縣第七中學(xué)2023-2024學(xué)年高三第二次模擬考試數(shù)學(xué)試卷含解析_第4頁(yè)
河北省正定縣第七中學(xué)2023-2024學(xué)年高三第二次模擬考試數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩18頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

河北省正定縣第七中學(xué)2023-2024學(xué)年高三第二次模擬考試數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.某裝飾公司制作一種扇形板狀裝飾品,其圓心角為120°,并在扇形弧上正面等距安裝7個(gè)發(fā)彩色光的小燈泡且在背面用導(dǎo)線相連(弧的兩端各一個(gè),導(dǎo)線接頭忽略不計(jì)),已知扇形的半徑為30厘米,則連接導(dǎo)線最小大致需要的長(zhǎng)度為()A.58厘米 B.63厘米 C.69厘米 D.76厘米2.已知函數(shù),若對(duì)于任意的,函數(shù)在內(nèi)都有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍為()A. B. C. D.3.在復(fù)平面內(nèi),復(fù)數(shù)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為()A. B. C. D.4.“紋樣”是中國(guó)藝術(shù)寶庫(kù)的瑰寶,“火紋”是常見的一種傳統(tǒng)紋樣.為了測(cè)算某火紋紋樣(如圖陰影部分所示)的面積,作一個(gè)邊長(zhǎng)為3的正方形將其包含在內(nèi),并向該正方形內(nèi)隨機(jī)投擲200個(gè)點(diǎn),己知恰有80個(gè)點(diǎn)落在陰影部分據(jù)此可估計(jì)陰影部分的面積是()A. B. C.10 D.5.已知函數(shù),,則的極大值點(diǎn)為()A. B. C. D.6.已知函數(shù),若曲線在點(diǎn)處的切線方程為,則實(shí)數(shù)的取值為()A.-2 B.-1 C.1 D.27.馬林●梅森是17世紀(jì)法國(guó)著名的數(shù)學(xué)家和修道士,也是當(dāng)時(shí)歐洲科學(xué)界一位獨(dú)特的中心人物,梅森在歐幾里得、費(fèi)馬等人研究的基礎(chǔ)上對(duì)2p﹣1作了大量的計(jì)算、驗(yàn)證工作,人們?yōu)榱思o(jì)念梅森在數(shù)論方面的這一貢獻(xiàn),將形如2P﹣1(其中p是素?cái)?shù))的素?cái)?shù),稱為梅森素?cái)?shù).若執(zhí)行如圖所示的程序框圖,則輸出的梅森素?cái)?shù)的個(gè)數(shù)是()A.3 B.4 C.5 D.68.已知,橢圓的方程,雙曲線的方程為,和的離心率之積為,則的漸近線方程為()A. B. C. D.9.已知定點(diǎn),,是圓上的任意一點(diǎn),點(diǎn)關(guān)于點(diǎn)的對(duì)稱點(diǎn)為,線段的垂直平分線與直線相交于點(diǎn),則點(diǎn)的軌跡是()A.橢圓 B.雙曲線 C.拋物線 D.圓10.“學(xué)習(xí)強(qiáng)國(guó)”學(xué)習(xí)平臺(tái)是由中宣部主管,以深入學(xué)習(xí)宣傳新時(shí)代中國(guó)特色社會(huì)主義思想為主要內(nèi)容,立足全體黨員?面向全社會(huì)的優(yōu)質(zhì)平臺(tái),現(xiàn)日益成為老百姓了解國(guó)家動(dòng)態(tài)?緊跟時(shí)代脈搏的熱門?該款軟件主要設(shè)有“閱讀文章”?“視聽學(xué)習(xí)”兩個(gè)學(xué)習(xí)模塊和“每日答題”?“每周答題”?“專項(xiàng)答題”?“挑戰(zhàn)答題”四個(gè)答題模塊?某人在學(xué)習(xí)過(guò)程中,“閱讀文章”不能放首位,四個(gè)答題板塊中有且僅有三個(gè)答題板塊相鄰的學(xué)習(xí)方法有()A.60 B.192 C.240 D.43211.已知、分別為雙曲線:(,)的左、右焦點(diǎn),過(guò)的直線交于、兩點(diǎn),為坐標(biāo)原點(diǎn),若,,則的離心率為()A.2 B. C. D.12.已知函數(shù),,若對(duì)任意的,存在實(shí)數(shù)滿足,使得,則的最大值是()A.3 B.2 C.4 D.5二、填空題:本題共4小題,每小題5分,共20分。13.在《九章算術(shù)》中,將底面為矩形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽(yáng)馬.如圖,若四棱錐為陽(yáng)馬,側(cè)棱底面,且,,設(shè)該陽(yáng)馬的外接球半徑為,內(nèi)切球半徑為,則__________.14.已知是夾角為的兩個(gè)單位向量,若,,則與的夾角為______.15.圖(1)是第七屆國(guó)際數(shù)學(xué)教育大會(huì)(ICME-7)的會(huì)徽?qǐng)D案,它是由一串直角三角形演化而成的(如圖(2)),其中,則的值是______.16.在中,角所對(duì)的邊分別為,,的平分線交于點(diǎn)D,且,則的最小值為________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,點(diǎn)的極坐標(biāo)為.(1)求的直角坐標(biāo)方程和的直角坐標(biāo);(2)設(shè)與交于,兩點(diǎn),線段的中點(diǎn)為,求.18.(12分)在①,②,③這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問題中,并解答.已知等差數(shù)列的公差為,等差數(shù)列的公差為.設(shè)分別是數(shù)列的前項(xiàng)和,且,,(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.19.(12分)設(shè)橢圓的離心率為,左、右焦點(diǎn)分別為,點(diǎn)D在橢圓C上,的周長(zhǎng)為.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)過(guò)圓上任意一點(diǎn)P作圓E的切線l,若l與橢圓C交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),求證:為定值.20.(12分)已知橢圓C的中心在坐標(biāo)原點(diǎn),其短半軸長(zhǎng)為1,一個(gè)焦點(diǎn)坐標(biāo)為,點(diǎn)在橢圓上,點(diǎn)在直線上,且.(1)證明:直線與圓相切;(2)設(shè)與橢圓的另一個(gè)交點(diǎn)為,當(dāng)?shù)拿娣e最小時(shí),求的長(zhǎng).21.(12分)如圖,在正四棱柱中,,,過(guò)頂點(diǎn),的平面與棱,分別交于,兩點(diǎn)(不在棱的端點(diǎn)處).(1)求證:四邊形是平行四邊形;(2)求證:與不垂直;(3)若平面與棱所在直線交于點(diǎn),當(dāng)四邊形為菱形時(shí),求長(zhǎng).22.(10分)已知三點(diǎn)在拋物線上.(Ⅰ)當(dāng)點(diǎn)的坐標(biāo)為時(shí),若直線過(guò)點(diǎn),求此時(shí)直線與直線的斜率之積;(Ⅱ)當(dāng),且時(shí),求面積的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

由于實(shí)際問題中扇形弧長(zhǎng)較小,可將導(dǎo)線的長(zhǎng)視為扇形弧長(zhǎng),利用弧長(zhǎng)公式計(jì)算即可.【詳解】因?yàn)榛¢L(zhǎng)比較短的情況下分成6等分,所以每部分的弦長(zhǎng)和弧長(zhǎng)相差很小,可以用弧長(zhǎng)近似代替弦長(zhǎng),故導(dǎo)線長(zhǎng)度約為63(厘米).故選:B.【點(diǎn)睛】本題主要考查了扇形弧長(zhǎng)的計(jì)算,屬于容易題.2、D【解析】

將原題等價(jià)轉(zhuǎn)化為方程在內(nèi)都有兩個(gè)不同的根,先求導(dǎo),可判斷時(shí),,是增函數(shù);當(dāng)時(shí),,是減函數(shù).因此,再令,求導(dǎo)得,結(jié)合韋達(dá)定理可知,要滿足題意,只能是存在零點(diǎn),使得在有解,通過(guò)導(dǎo)數(shù)可判斷當(dāng)時(shí),在上是增函數(shù);當(dāng)時(shí),在上是減函數(shù);則應(yīng)滿足,再結(jié)合,構(gòu)造函數(shù),求導(dǎo)即可求解;【詳解】函數(shù)在內(nèi)都有兩個(gè)不同的零點(diǎn),等價(jià)于方程在內(nèi)都有兩個(gè)不同的根.,所以當(dāng)時(shí),,是增函數(shù);當(dāng)時(shí),,是減函數(shù).因此.設(shè),,若在無(wú)解,則在上是單調(diào)函數(shù),不合題意;所以在有解,且易知只能有一個(gè)解.設(shè)其解為,當(dāng)時(shí),在上是增函數(shù);當(dāng)時(shí),在上是減函數(shù).因?yàn)椋匠淘趦?nèi)有兩個(gè)不同的根,所以,且.由,即,解得.由,即,所以.因?yàn)?,所以,代入,?設(shè),,所以在上是增函數(shù),而,由可得,得.由在上是增函數(shù),得.綜上所述,故選:D.【點(diǎn)睛】本題考查由函數(shù)零點(diǎn)個(gè)數(shù)求解參數(shù)取值范圍問題,構(gòu)造函數(shù)法,導(dǎo)數(shù)法研究函數(shù)增減性與最值關(guān)系,轉(zhuǎn)化與化歸能力,屬于難題3、C【解析】

利用復(fù)數(shù)的運(yùn)算法則、幾何意義即可得出.【詳解】解:復(fù)數(shù)i(2+i)=2i﹣1對(duì)應(yīng)的點(diǎn)的坐標(biāo)為(﹣1,2),故選:C【點(diǎn)睛】本題考查了復(fù)數(shù)的運(yùn)算法則、幾何意義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.4、D【解析】

直接根據(jù)幾何概型公式計(jì)算得到答案.【詳解】根據(jù)幾何概型:,故.故選:.【點(diǎn)睛】本題考查了根據(jù)幾何概型求面積,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.5、A【解析】

求出函數(shù)的導(dǎo)函數(shù),令導(dǎo)數(shù)為零,根據(jù)函數(shù)單調(diào)性,求得極大值點(diǎn)即可.【詳解】因?yàn)?,故可得,令,因?yàn)?,故可得或,則在區(qū)間單調(diào)遞增,在單調(diào)遞減,在單調(diào)遞增,故的極大值點(diǎn)為.故選:A.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求函數(shù)的極值點(diǎn),屬基礎(chǔ)題.6、B【解析】

求出函數(shù)的導(dǎo)數(shù),利用切線方程通過(guò)f′(0),求解即可;【詳解】f(x)的定義域?yàn)椋ī?,+∞),因?yàn)閒′(x)a,曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程為y=2x,可得1﹣a=2,解得a=﹣1,故選:B.【點(diǎn)睛】本題考查函數(shù)的導(dǎo)數(shù)的幾何意義,切線方程的求法,考查計(jì)算能力.7、C【解析】

模擬程序的運(yùn)行即可求出答案.【詳解】解:模擬程序的運(yùn)行,可得:p=1,S=1,輸出S的值為1,滿足條件p≤7,執(zhí)行循環(huán)體,p=3,S=7,輸出S的值為7,滿足條件p≤7,執(zhí)行循環(huán)體,p=5,S=31,輸出S的值為31,滿足條件p≤7,執(zhí)行循環(huán)體,p=7,S=127,輸出S的值為127,滿足條件p≤7,執(zhí)行循環(huán)體,p=9,S=511,輸出S的值為511,此時(shí),不滿足條件p≤7,退出循環(huán),結(jié)束,故若執(zhí)行如圖所示的程序框圖,則輸出的梅森素?cái)?shù)的個(gè)數(shù)是5,故選:C.【點(diǎn)睛】本題主要考查程序框圖,屬于基礎(chǔ)題.8、A【解析】

根據(jù)橢圓與雙曲線離心率的表示形式,結(jié)合和的離心率之積為,即可得的關(guān)系,進(jìn)而得雙曲線的離心率方程.【詳解】橢圓的方程,雙曲線的方程為,則橢圓離心率,雙曲線的離心率,由和的離心率之積為,即,解得,所以漸近線方程為,化簡(jiǎn)可得,故選:A.【點(diǎn)睛】本題考查了橢圓與雙曲線簡(jiǎn)單幾何性質(zhì)應(yīng)用,橢圓與雙曲線離心率表示形式,雙曲線漸近線方程求法,屬于基礎(chǔ)題.9、B【解析】

根據(jù)線段垂直平分線的性質(zhì),結(jié)合三角形中位線定理、圓錐曲線和圓的定義進(jìn)行判斷即可.【詳解】因?yàn)榫€段的垂直平分線與直線相交于點(diǎn),如下圖所示:所以有,而是中點(diǎn),連接,故,因此當(dāng)在如下圖所示位置時(shí)有,所以有,而是中點(diǎn),連接,故,因此,綜上所述:有,所以點(diǎn)的軌跡是雙曲線.故選:B【點(diǎn)睛】本題考查了雙曲線的定義,考查了數(shù)學(xué)運(yùn)算能力和推理論證能力,考查了分類討論思想.10、C【解析】

四個(gè)答題板塊中選三個(gè)捆綁在一起,和另外一個(gè)答題板塊用插入法.注意按“閱讀文章”分類.【詳解】四個(gè)答題板塊中選三個(gè)捆綁在一起,和另外一個(gè)答題板塊用插入法,由于“閱讀文章”不能放首位,因此不同的方法數(shù)為.故選:C.【點(diǎn)睛】本題考查排列組合的應(yīng)用,考查捆綁法和插入法求解排列問題.對(duì)相鄰問題用捆綁法,不相鄰問題用插入法是解決這類問題的常用方法.11、D【解析】

作出圖象,取AB中點(diǎn)E,連接EF2,設(shè)F1A=x,根據(jù)雙曲線定義可得x=2a,再由勾股定理可得到c2=7a2,進(jìn)而得到e的值【詳解】解:取AB中點(diǎn)E,連接EF2,則由已知可得BF1⊥EF2,F(xiàn)1A=AE=EB,設(shè)F1A=x,則由雙曲線定義可得AF2=2a+x,BF1﹣BF2=3x﹣2a﹣x=2a,所以x=2a,則EF2=2a,由勾股定理可得(4a)2+(2a)2=(2c)2,所以c2=7a2,則e故選:D.【點(diǎn)睛】本題考查雙曲線定義的應(yīng)用,考查離心率的求法,數(shù)形結(jié)合思想,屬于中檔題.對(duì)于圓錐曲線中求離心率的問題,關(guān)鍵是列出含有中兩個(gè)量的方程,有時(shí)還要結(jié)合橢圓、雙曲線的定義對(duì)方程進(jìn)行整理,從而求出離心率.12、A【解析】

根據(jù)條件將問題轉(zhuǎn)化為,對(duì)于恒成立,然后構(gòu)造函數(shù),然后求出的范圍,進(jìn)一步得到的最大值.【詳解】,,對(duì)任意的,存在實(shí)數(shù)滿足,使得,易得,即恒成立,,對(duì)于恒成立,設(shè),則,令,在恒成立,,故存在,使得,即,當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增.,將代入得:,,且,故選:A【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,零點(diǎn)存在定理和不等式恒成立問題,考查了轉(zhuǎn)化思想,屬于難題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

該陽(yáng)馬補(bǔ)形所得到的長(zhǎng)方體的對(duì)角線為外接球的直徑,由此能求出,內(nèi)切球在側(cè)面內(nèi)的正視圖是的內(nèi)切圓,從而內(nèi)切球半徑為,由此能求出.【詳解】四棱錐為陽(yáng)馬,側(cè)棱底面,且,,設(shè)該陽(yáng)馬的外接球半徑為,該陽(yáng)馬補(bǔ)形所得到的長(zhǎng)方體的對(duì)角線為外接球的直徑,,,側(cè)棱底面,且底面為正方形,內(nèi)切球在側(cè)面內(nèi)的正視圖是的內(nèi)切圓,內(nèi)切球半徑為,故.故答案為.【點(diǎn)睛】本題考查了幾何體外接球和內(nèi)切球的相關(guān)問題,補(bǔ)形法的運(yùn)用,以及數(shù)學(xué)文化,考查了空間想象能力,是中檔題.解決球與其他幾何體的切、接問題,關(guān)鍵是能夠確定球心位置,以及選擇恰當(dāng)?shù)慕嵌茸龀鼋孛?球心位置的確定的方法有很多,主要有兩種:(1)補(bǔ)形法(構(gòu)造法),通過(guò)補(bǔ)形為長(zhǎng)方體(正方體),球心位置即為體對(duì)角線的中點(diǎn);(2)外心垂線法,先找出幾何體中不共線三點(diǎn)構(gòu)成的三角形的外心,再找出過(guò)外心且與不共線三點(diǎn)確定的平面垂直的垂線,則球心一定在垂線上.14、【解析】

依題意可得,再根據(jù)求模,求數(shù)量積,最后根據(jù)夾角公式計(jì)算可得;【詳解】解:因?yàn)槭菉A角為的兩個(gè)單位向量所以,又,所以,,所以,因?yàn)樗?;故答案為:【點(diǎn)睛】本題考查平面向量的數(shù)量積的運(yùn)算律,以及夾角的計(jì)算,屬于基礎(chǔ)題.15、【解析】

先求出向量和夾角的余弦值,再由公式即得.【詳解】如圖,過(guò)點(diǎn)作的平行線交于點(diǎn),那么向量和夾角為,,,,,且是直角三角形,,同理得,,.故答案為:【點(diǎn)睛】本題主要考查平面向量數(shù)量積,解題關(guān)鍵是找到向量和的夾角.16、9【解析】分析:先根據(jù)三角形面積公式得條件、再利用基本不等式求最值.詳解:由題意可知,,由角平分線性質(zhì)和三角形面積公式得,化簡(jiǎn)得,因此當(dāng)且僅當(dāng)時(shí)取等號(hào),則的最小值為.點(diǎn)睛:在利用基本不等式求最值時(shí),要特別注意“拆、拼、湊”等技巧,使其滿足基本不等式中“正”(即條件要求中字母為正數(shù))、“定”(不等式的另一邊必須為定值)、“等”(等號(hào)取得的條件)的條件才能應(yīng)用,否則會(huì)出現(xiàn)錯(cuò)誤.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1),(2)【解析】

(1)利用互化公式把曲線C化成直角坐標(biāo)方程,把點(diǎn)P的極坐標(biāo)化成直角坐標(biāo);(2)把直線l的參數(shù)方程的標(biāo)準(zhǔn)形式代入曲線C的直角坐標(biāo)方程,根據(jù)韋達(dá)定理以及參數(shù)t的幾何意義可得.【詳解】(1)由ρ2得ρ2+ρ2sin2θ=2,將ρ2=x2+y2,y=ρsinθ代入上式并整理得曲線C的直角坐標(biāo)方程為y2=1,設(shè)點(diǎn)P的直角坐標(biāo)為(x,y),因?yàn)镻的極坐標(biāo)為(,),所以x=ρcosθcos1,y=ρsinθsin1,所以點(diǎn)P的直角坐標(biāo)為(1,1).(2)將代入y2=1,并整理得41t2+110t+25=0,因?yàn)椤鳎?102﹣4×41×25=8000>0,故可設(shè)方程的兩根為t1,t2,則t1,t2為A,B對(duì)應(yīng)的參數(shù),且t1+t2,依題意,點(diǎn)M對(duì)應(yīng)的參數(shù)為,所以|PM|=||.【點(diǎn)睛】本題考查了簡(jiǎn)單曲線的極坐標(biāo)方程,屬中檔題.18、(1);(2)【解析】

方案一:(1)根據(jù)等差數(shù)列的通項(xiàng)公式及前n項(xiàng)和公式列方程組,求出和,從而寫出數(shù)列的通項(xiàng)公式;(2)由第(1)題的結(jié)論,寫出數(shù)列的通項(xiàng),采用分組求和、等比求和公式以及裂項(xiàng)相消法,求出數(shù)列的前項(xiàng)和.其余兩個(gè)方案與方案一的解法相近似.【詳解】解:方案一:(1)∵數(shù)列都是等差數(shù)列,且,,解得,綜上(2)由(1)得:方案二:(1)∵數(shù)列都是等差數(shù)列,且,解得,.綜上,(2)同方案一方案三:(1)∵數(shù)列都是等差數(shù)列,且.,解得,,.綜上,(2)同方案一【點(diǎn)睛】本題考查了等差數(shù)列的通項(xiàng)公式、前n項(xiàng)和公式的應(yīng)用,考查了分組求和、等比求和及裂項(xiàng)相消法求數(shù)列的前n項(xiàng)和,屬于中檔題.19、(1)(2)見解析【解析】

(1)由,周長(zhǎng),解得,即可求得標(biāo)準(zhǔn)方程.(2)通過(guò)特殊情況的斜率不存在時(shí),求得,再證明的斜率存在時(shí),即可證得為定值.通過(guò)設(shè)直線的方程為與橢圓方程聯(lián)立,借助韋達(dá)定理求得,利用直線與圓相切,即,求得的關(guān)系代入,化簡(jiǎn)即可證得即可證得結(jié)論.【詳解】(1)由題意得,周長(zhǎng),且.聯(lián)立解得,,所以橢圓C的標(biāo)準(zhǔn)方程為.(2)①當(dāng)直線l的斜率不存在時(shí),不妨設(shè)其方程為,則,所以,即.②當(dāng)直線l的斜率存在時(shí),設(shè)其方程為,并設(shè),由,,,由直線l與圓E相切,得.所以.從而,即.綜合上述,得為定值.【點(diǎn)睛】本題考查了橢圓的標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系中定值問題,考查了學(xué)生計(jì)算求解能力,難度較難.20、(1)見解析;(2).【解析】

(1)分斜率為0,斜率不存在,斜率不為0三種情況討論,設(shè)的方程為,可求解得到,,可得到的距離為1,即得證;(2)表示的面積為,利用均值不等式,即得解.【詳解】(1)由題意,橢圓的焦點(diǎn)在x軸上,且,所以.所以橢圓的方程為.由點(diǎn)在直線上,且知的斜率必定存在,當(dāng)?shù)男甭蕿?時(shí),,,于是,到的距離為1,直線與圓相切.當(dāng)?shù)男甭什粸?時(shí),設(shè)的方程為,與聯(lián)立得,所以,,從而.而,故的方程為,而在上,故,從而,于是.此時(shí),到的距離為1,直線與圓相切.綜上,直線與圓相切.(2)由(1)知,的面積為,上式中,當(dāng)且僅當(dāng)?shù)忍?hào)成立,所以面積的最小值為1.此時(shí),點(diǎn)在橢圓的長(zhǎng)軸端點(diǎn),為.不妨設(shè)為長(zhǎng)軸

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論